G:T mismatches, the major mispairs generated during DNA metabolism, are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). Mismatch-specific DNA glycosylases must discriminate the mismatches against million-fold excess correct base pairs. MBD4 efficiently removes thymine opposite guanine but not opposite adenine. Previous studies have revealed that the substrate thymine is flipped out and enters the catalytic site of the enzyme, while the estranged guanine is stabilized by Arg468 of MBD4. To gain further insights into the mismatch discrimination mechanism of MBD4, we assessed the glycosylase activity of MBD4 toward various base pairs. In addition, we determined a crystal structure of MBD4 bound to T:O6-methylguanine-containing DNA, which suggests the O6 and N2 of purine and the O4 of pyrimidine are required to be a substrate for MBD4. To understand the role of the Arg468 finger in catalysis, we evaluated the glycosylase activity of MBD4 mutants, which revealed the guanidinium moiety of Arg468 may play an important role in catalysis. D560N/R468K MBD4 bound to T:G mismatched DNA shows that the side chain amine moiety of the Lys stabilizes the flipped-out thymine by a water-mediated phosphate pinching, while the backbone carbonyl oxygen of the Lys engages in hydrogen bonds with N2 of the estranged guanine. Comparison of various DNA glycosylase structures implies the guanidinium and amine moieties of Arg and Lys, respectively, may involve in discriminating between substrate mismatches and nonsubstrate base pairs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173489 | PMC |
http://dx.doi.org/10.1042/BCJ20210017 | DOI Listing |
Mikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFCRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.
View Article and Find Full Text PDFModeling long-range DNA dependencies is crucial for understanding genome structure and function across a wide range of biological contexts. However, effectively capturing these extensive dependencies, which may span millions of base pairs in tasks such as three-dimensional (3D) chromatin folding prediction, remains a significant challenge. Furthermore, a comprehensive benchmark suite for evaluating tasks that rely on long-range dependencies is notably absent.
View Article and Find Full Text PDFBMC Genom Data
January 2025
School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China.
Objective: Mitochondrial genome sequences are very useful for understanding the mitogenome evolution itself and reconstructing phylogeny of different plant lineages. Bauhinia purpurea, a species from the legume family Leguminosae, is widely distributed in South China and has high ornamental value. Here, we sequenced and assembled the mitogenome of B.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India. Electronic address:
Two newly synthesized ligands, 1-((2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL1) and 1-((2-(4-(naphthalen-1-yl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL2) were characterized using spectroscopy and single X-ray crystallography. Both belong to triclinic systems with space groups P21/c (HL1) and P-1 (HL2), exhibiting planar structures. Biological assays revealed significant antitumor activity, with HL2 showing significant antitumor activity against HepG2 cells (IC: 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!