Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quorum sensing (QS) is a sophisticated bacterial communication system which plays a key role in the virulence and biofilm formation of many pathogens. The Pseudomonas aeruginosa QS network consists of four sets of connected systems (las, rlh, pqs and iqs) hierarchically organized. The pqs system involves characteristic autoinducers (AI), most of them sharing an alkylquinolone (AQ) structure, and is able to carry out several relevant biological functions besides its main signalling activity. Their role in bacterial physiology and pathogenicity has been widely studied. Indeed, the presence of these metabolites in several body fluids and infected tissues has pointed to their potential value as biomarkers of infection. In this review, we summarize the most recent findings about the biological implications and the clinical significance of the main P. aeruginosa AQs. These findings have encouraged the development of analytical and bioanalytical techniques addressed to assess the role of these metabolites in bacterial growth and survival, during pathogenesis or as biomarkers of infections. The availability of highly sensitive reliable analytical methods suitable for clinical analysis would allow getting knowledge about pathogenesis and disease prognosis or progression, supporting clinicians on the decision-making process for the management of these infections and guiding them on the application of more effective and appropriate treatments. The benefits from the implementation of the point-of-care (PoC)-type testing in infectious disease diagnostics, which are seen to improve patient outcomes by promoting earlier therapeutic interventions, are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-021-03356-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!