A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating the state of the COVID-19 epidemic in France using a model with memory. | LitMetric

Estimating the state of the COVID-19 epidemic in France using a model with memory.

R Soc Open Sci

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373 13453 Marseille, France.

Published: March 2021

In this paper, we use a deterministic epidemic model with memory to estimate the state of the COVID-19 epidemic in France, from early March until mid-December 2020. Our model is in the SEIR class, which means that when a susceptible individual (S) becomes infected, he/she is first exposed (E), i.e. not yet contagious. Then he/she becomes infectious (I) for a certain length of time, during which he/she may infect susceptible individuals around him/her, and finally becomes removed (R), that is, either immune or dead. The specificity of our model is that it assumes a very general probability distribution for the pair of exposed and infectious periods. The law of large numbers limit of such a model is a model with memory (the future evolution of the model depends not only upon its present state, but also upon its past). We present theoretical results linking the (unobserved) parameters of the model to various quantities which are more easily measured during the early stages of an epidemic. We then apply these results to estimate the state of the COVID-19 epidemic in France, using available information on the infection fatality ratio and on the distribution of the exposed and infectious periods. Using the hospital data published daily by Santé Publique France, we gather some information on the delay between infection and hospital admission, intensive care unit (ICU) admission and hospital deaths, and on the proportion of people who have been infected up to the end of 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074964PMC
http://dx.doi.org/10.1098/rsos.202327DOI Listing

Publication Analysis

Top Keywords

state covid-19
12
covid-19 epidemic
12
epidemic france
12
model memory
12
model
8
estimate state
8
exposed infectious
8
infectious periods
8
epidemic
5
estimating state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!