The present study explored the intrinsic event-related potential (ERP) features of the effects of acute psychological stress on the processing of motion-in-depth perception using a dual-task paradigm. After a mental arithmetic task was used to induce acute psychological stress, a collision task was used to evaluate motion-in-depth perception. The error value and average amplitude of late slow waves (SW) were significantly larger for the earlier colliding spheres' than for the later colliding spheres. The P1 peak latency in the left occipital region was significantly shorter than that of the right occipital region in the motion-in-depth perception task. Compared to the control condition, the estimated value of residual time-to-collision and error value were significantly reduced, and the N1 peak amplitude and the SW averaged amplitude were significantly increased in the stress condition. Longer motion-in-depth time improved discrimination accuracy and decreased the investment of cognitive resources. Acute psychological stress increased behavioral performance and enhanced attention resources on the motion-in-depth perception task together with greater investment of cognitive resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085683PMC
http://dx.doi.org/10.5709/acp-0309-6DOI Listing

Publication Analysis

Top Keywords

motion-in-depth perception
20
acute psychological
16
psychological stress
16
event-related potential
8
occipital region
8
perception task
8
investment cognitive
8
cognitive resources
8
motion-in-depth
6
stress
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!