Probing the Solar Meridional Circulation Using Fourier Legendre Decomposition.

Astrophys J

National Center for Atmospheric Research, HAO Division, 3080 Center Green Drive, Boulder, CO 80301, USA.

Published: April 2021

We apply the helioseismic methodology of Fourier Legendre decomposition to 88 months of Dopplergrams obtained by the Helioseismic and Magnetic Imager (HMI) as the basis of inferring the depth variation of the mean meridional flow, as averaged between 20° and 60° latitude and in time, in both the northern and southern hemispheres. We develop and apply control procedures designed to assess and remove center-to-limb artifacts using measurements obtained by performing the analysis with respect to artificial poles at the east and west limbs. Forward modeling is carried out using sensitivity functions proportional to the mode kinetic energy density to evaluate the consistency of the corrected frequency shifts with models of the depth variation of the meridional circulation in the top half of the convection zone. The results, taken at face value, imply substantial differences between the meridional circulation in the northern and southern hemispheres. The inferred presence of a return (equatorward propagating) flow at a depth of approximately 40 Mm below the photosphere in the northern hemisphere is surprising and appears to be inconsistent with many other helioseismic analyses. This discrepancy may be the result of the inadequacy of our methodology to remove systematic errors in HMI data. Our results appear to be at least qualitatively similar to those by Gizon et al., which point to an anomaly in HMI data that is not present in MDI or GONG data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097699PMC
http://dx.doi.org/10.3847/1538-4357/abe7e4DOI Listing

Publication Analysis

Top Keywords

meridional circulation
12
fourier legendre
8
legendre decomposition
8
depth variation
8
variation meridional
8
northern southern
8
southern hemispheres
8
hmi data
8
probing solar
4
meridional
4

Similar Publications

The Atlantic Meridional Overturning Circulation (AMOC) is crucial for global ocean carbon and heat uptake, and controls the climate around the North Atlantic. Despite its importance, quantifying the AMOC's past changes and assessing its vulnerability to climate change remains highly uncertain. Understanding past AMOC changes has relied on proxies, most notably sea surface temperature anomalies over the subpolar North Atlantic.

View Article and Find Full Text PDF

Emergence of the North Pacific heat storage pattern delayed by decadal wind-driven redistribution.

Nat Commun

January 2025

Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific.

View Article and Find Full Text PDF

Multiple tipping points in the Earth system could be triggered when global warming exceeds specific thresholds. However, the degree of their impact on the East Asian hydroclimate remains uncertain due to the lack of quantitative rainfall records. Here we present an ensemble reconstruction of East Asian summer monsoon (EASM) rainfall since the Last Glacial Maximum (LGM) using nine statistical and machine learning methods based on multi-proxy records from a maar lake in southern China.

View Article and Find Full Text PDF

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

A templex-based study of the Atlantic Meridional Overturning Circulation dynamics in idealized chaotic models.

Chaos

January 2025

CNRS-IRD-CONICET-UBA, Institut Franco-Argentin d'Études sur le Climat et ses Impacts (IRL 3351 IFAECI), C1428EGA CABA, Argentina.

Significant changes in a system's dynamics can be understood through modifications in the topological structure of its flow in phase space. In the Earth's climate system, such changes are often referred to as tipping points. One of the large-scale components that may pass a tipping point is the Atlantic Meridional Overturning Circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!