AI Article Synopsis

  • Corpus callosum anomalies (CCA) are common congenital brain abnormalities primarily influenced by genetic factors, which vary widely among individuals.* -
  • In a study of 16 Japanese patients, significant phenotypes were found including 100% intellectual disability, motor delays in 93.8%, and seizures in 60%, with MRI revealing colpocephaly in 84.6% of cases.* -
  • Whole exome sequencing of the patients identified genetic changes in 56.3%, with notable links to ARID1B and TCF4 variants, indicating these as important contributors to CCAs.*

Article Abstract

Corpus callosum anomalies (CCA) is a common congenital brain anomaly with various etiologies. Although one of the most important etiologies is genetic factors, the genetic background of CCA is heterogenous and diverse types of variants are likely to be causative. In this study, we analyzed 16 Japanese patients with corpus callosum anomalies to delineate clinical features and the genetic background of CCAs. We observed the common phenotypes accompanied by CCAs: intellectual disability (100%), motor developmental delay (93.8%), seizures (60%), and facial dysmorphisms (50%). Brain magnetic resonance imaging showed colpocephaly (enlarged posterior horn of the lateral ventricles, 84.6%) and enlarged supracerebellar cistern (41.7%). Whole exome sequencing revealed genetic alterations in 9 of the 16 patients (56.3%), including 8 de novo alterations (2 copy number variants and variants in ARID1B, CDK8, HIVEP2, and TCF4) and a recessive variant of TBCK. De novo ARID1B variants were identified in three unrelated individuals, suggesting that ARID1B variants are major genetic causes of CCAs. A de novo TCF4 variant and somatic mosaic deletion at 18q21.31-qter encompassing TCF4 suggest an association of TCF4 abnormalities with CCAs. This study, which analyzes CCA patients usung whole exome sequencing, demonstrates that comprehensive genetic analysis would be useful for investigating various causal variants of CCAs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s10038-021-00932-yDOI Listing

Publication Analysis

Top Keywords

corpus callosum
12
callosum anomalies
12
comprehensive genetic
8
genetic analysis
8
japanese patients
8
patients corpus
8
genetic background
8
exome sequencing
8
arid1b variants
8
genetic
6

Similar Publications

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.

View Article and Find Full Text PDF

Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy.

J Mol Neurosci

January 2025

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.

CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.

View Article and Find Full Text PDF

Background: The spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain's gray matter (GM) have been interpreted as representations of neural activity variations. In previous research, white matter (WM) signals, often considered noise, have also been demonstrated to reflect characteristics of functional activity and interactions among different brain regions. Recently, functional gradients have gained significant attention due to their success in characterizing the functional organization of the whole brain.

View Article and Find Full Text PDF

The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.

View Article and Find Full Text PDF

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!