Lights, Camera, Action: Using Student Videos to Assess Learning.

Nurse Educ

By Linda Nancy Roney, EdD, RN-BC, CPEN, CNE, and Katherine R. Knapik, BSN, EGAN, School of Nursing & Health Studies, Fairfield University, Fairfield, CT,

Published: October 2021

Download full-text PDF

Source
http://dx.doi.org/10.1097/NNE.0000000000001033DOI Listing

Publication Analysis

Top Keywords

lights camera
4
camera action
4
action student
4
student videos
4
videos assess
4
assess learning
4
lights
1
action
1
student
1
videos
1

Similar Publications

All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).

View Article and Find Full Text PDF

When observing chip-to-free-space light beams from silicon photonics (SiPh) to free space, manual adjustment of camera lens is often required to obtain a focused image of the light beams. In this Letter, we demonstrated an auto-focusing system based on the you-only-look-once (YOLO) model. The trained YOLO model exhibits high classification accuracy of 99.

View Article and Find Full Text PDF

Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min.

View Article and Find Full Text PDF

Background: One method for noninvasive and simple urinary microalbumin testing is urine test strips. However, when visually assessing urine test strips, accurate assessment may be difficult due to environmental influences-such as lighting color and intensity-and the physical and psychological influences of the assessor. These complicate the formation of an objective assessment.

View Article and Find Full Text PDF

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!