Background: Clinical studies have linked usage of progestins (synthetic progesterone [P4]) to breast cancer risk. However, little is understood regarding the role of native P4, signaling through the progesterone receptor (PR), in breast tumor formation. Recently, we reported a link between PR and immune signaling pathways, showing that P4/PR can repress type I interferon signaling pathways. Given these findings, we sought to investigate whether P4/PR drive immunomodulation in the mammary gland and promote tumor formation.

Methods: To determine the effect of P4 on immune cell populations in the murine mammary gland, mice were treated with P4 or placebo pellets for 21 days. Immune cell populations in the mammary gland, spleen, and inguinal lymph nodes were subsequently analyzed by flow cytometry. To assess the effect of PR overexpression on mammary gland tumor development as well as immune cell populations in the mammary gland, a transgenic mouse model was used in which PR was overexpressed throughout the entire mouse. Immune cell populations were assessed in the mammary glands, spleens, and inguinal lymph nodes of 6-month-old transgenic and control mice by flow cytometry. Transgenic mice were also monitored for mammary gland tumor development over a 2-year time span. Following development of mammary gland tumors, immune cell populations in the tumors and spleens of transgenic and control mice were analyzed by flow cytometry.

Results: We found that mice treated with P4 exhibited changes in the mammary gland indicative of an inhibited immune response compared with placebo-treated mice. Furthermore, transgenic mice with PR overexpression demonstrated decreased numbers of immune cell populations in their mammary glands, lymph nodes, and spleens. On long-term monitoring, we determined that multiparous PR-overexpressing mice developed significantly more mammary gland tumors than control mice. Additionally, tumors from PR-overexpressing mice contained fewer infiltrating immune cells. Finally, RNA sequencing analysis of tumor samples revealed that immune-related gene signatures were lower in tumors from PR-overexpressing mice as compared with control mice.

Conclusion: Together, these findings offer a novel mechanism of P4-driven mammary gland tumor development and provide rationale in investigating the usage of antiprogestin therapies to promote immune-mediated elimination of mammary gland tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103939PMC
http://dx.doi.org/10.1136/jitc-2020-001710DOI Listing

Publication Analysis

Top Keywords

mammary gland
48
immune cell
24
cell populations
24
tumor development
16
mammary
14
gland
12
populations mammary
12
lymph nodes
12
gland tumor
12
control mice
12

Similar Publications

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

A family with an atypical presentation of TBX3-related disorder.

Eur J Med Genet

January 2025

Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel. Electronic address:

Background: Ulnar mammary syndrome (UMS) is an autosomal dominant disorder caused by heterozygous pathogenic variants in the T-box transcription factor 3 (TBX3) gene. The phenotype is classically characterized by upper limb defects and apocrine/mammary gland hypoplasia. Endocrine abnormalities include hypogonadotropic hypogonadism (HH), partial growth hormone deficiency and dysmorphic features, while ectopic pituitary gland and various congenital anomalies have also been described.

View Article and Find Full Text PDF

Comparing the efficacy of serotonin and EGTA on postpartum hypocalcemia.

J Dairy Sci

January 2025

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53701. Electronic address:

Inducing a transient state of hypocalcemia prepartum mobilizes stored calcium (Ca) before the abrupt demand for Ca at parturition thus more tightly regulating postpartum hypocalcemia. Prepartum transient hypocalcemia can be achieved through intravenous infusions of either the precursor to serotonin, 5-hydroxy-tryptophan (5HTP) or a Ca chelating agent, ethylene-glycol-tetraacetic acid (EGTA). This study aimed to compare the ability of 5HTP and EGTA treatments to prevent postpartum hypocalcemia.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the leading causes of death and morbidity among women worldwide. Epidemiologic evidence shows that the risk of BC and other chronic diseases decreases as the proportion of whole plant foods increases, while the proportion of animal foods (fish, meat, poultry, eggs, seafood, and dairy products) and non-whole plant foods (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!