Background: RNA-directed DNA methylation (RdDM) initiates cytosine methylation in all contexts and maintains asymmetric CHH methylation. Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question of whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte.
Results: Here, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to the current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite the loss of embryo CHH hypermethylation.
Conclusions: We conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101221 | PMC |
http://dx.doi.org/10.1186/s13059-021-02358-3 | DOI Listing |
Eur J Med Res
December 2024
Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.
View Article and Find Full Text PDFCell Biosci
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.
Results: This study uncovers three novel mutations (c.
Adv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFCommun Biol
December 2024
Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China.
Adult Schistosoma produces a large number of eggs that play essential roles in host pathology and disease dissemination. Consequently, understanding the mechanisms of sexual maturation and egg production may open a new avenue for controlling schistosomiasis. Here, we describe that Bantam miRNA and miR-1989 regulate Wnt signaling pathway by targeting Frizzled-5/7/9, which is involved in ovarian development and oviposition.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!