The designing of biocompatible nanocarriers for the efficient delivery of their cargos to the desired targets remains a challenge. In this regard, the most promising strategy relies on the construction of pH- or thermo-responsive nanoparticles (NPs). However, it is also important to preserve the balance between the responsiveness of the carrier and their stability in physiological conditions. Therefore, we described a new family of copolymers of lactide and allyl-glycidyl ether which were subsequently modified by thiol-ene reaction to functionalize the resulting copolymer with acetylcysteine (ACC) or thioglycolic acid (tGA) moieties. Subsequently, these copolymers were used to obtain blank and doxorubicin (DOX) loaded NPs with an average diameter of about 50-100 nm. Interestingly, the NPs were stable in different pH conditions, however, the presence of ACC or tGA units in the polymeric chain allows for the reduction of the undesired burst release due to the supramolecular interactions between polymeric pedant groups and DOX. The release tests of DOX from NPs showed that DOX release rate decrease depending on the pH values and the copolymer functionalization in order of non-modified NPs > ACC-modified NPs > tGA functionalized NPs. Most importantly, the MTT assay showed that all blank NPs are non-toxic against the normal L929 cell line. Subsequently, the antitumor efficiency of the obtained NPs was tested towards L929 (murine fibroblast cell line), HeLa (cervical cancer), and AGS (human gastric adenocarcinoma cancer) cells. The results demonstrated that DOX-loaded NPs efficiently induce the reduction in the viability of the HeLa and AGS cell, and this reduction in the viability was even below 20 % for the AGS cells. Together with their biocompatibility, the obtained NPs offer a novel route for the preparation of nanocarriers for the controlled and efficient delivery of anticancer drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2021.111801 | DOI Listing |
Neuro Oncol
January 2025
Department of Medicine, Division of Experimental Medicine, McGill University.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.
View Article and Find Full Text PDFJMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!