Feline- and canine-derived coronaviruses (FCoVs and CCoVs) are widespread among dog and cat populations. This study was to understand the route of disease origin and viral transmission in veterinary animals and in human through comparative pan-genomic analysis of coronavirus sequences, especially retrieved from genomes of FCoV and CCoV. Average nucleotide identity based on complete genomes might clustered CoV strains according to their infected host, with an exception of type II of CCoV (accession number KC175339) that was clustered closely to virulent FCoVs. In contrast, the hierarchical clustering based on gene repertories retrieved from pan-genome analysis might divided the examined coronaviruses into host-independent clusters, and formed obviously the cluster of Alphacoronaviruses into sub-clusters of feline-canine, only feline, feline-canine-human coronavirus. Also, functional analysis of genomic subsets might help to divide FCoV and CCoV pan-genomes into (i) clusters of core genes encoding spike, membrane, nucleocapsid proteins, and ORF1ab polyprotein; (ii) clusters of core-like genes encoding nonstructural proteins; (iii) clusters of accessory genes encoding the ORF1A; and (iv) two singleton genes encoding nonstructural protein and polyprotein 1ab. Seven clusters of gene repertories were categorized as common to the FCoV and/or CCoV genomes including pantropic and high virulent strains, illustrating that distinct core-like genes/accessory genes concerning to their pathogenicity should be exploited in further biotype analysis of new isolate. In conclusion, the phylogenomic analyses have allowed the identification of trends in the viral genomic data, especially in developing a specific control measures against coronavirus disease, such as the selection of good markers for differentiating new species from common and/or pantropic isolates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cimid.2021.101654 | DOI Listing |
Plant Cell Environ
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Innsbruck, Austria.
Preterm infants are at high risk of developing respiratory distress syndrome (RDS). Mutations in the genes encoding for surfactant proteins B and C or the ATP-binding cassette transporter A3 (ABCA3) are rare but known to be associated with severe RDS and interstitial lung diseases. The exact prevalence of these mutations in the general population is difficult to determine, as they are usually studied in connection with clinical symptoms.
View Article and Find Full Text PDFBMC Genomics
January 2025
Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
Background: Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far.
Results: Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens.
BMC Plant Biol
January 2025
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 520521, China.
Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.
Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.
Commun Biol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!