Tigecycline (TGC) is recognised as last resort of drugs against several antibiotic-resistant bacteria. Bacterial resistance to tigecycline due to presence of plasmid-mediated mobile TGC resistance genes (tet X3/X4) has broken another defense line. Therefore, rapid and reproducible detection of tigecycline-resistant E. coli (TREC) is required. The current study is designed for the identification and differentiation of TREC from tigecycline-sensitive E. coli (TSEC) by employing SERS by using Ag NPs as a SERS substrate. The SERS spectral fingerprints of E. coli strains associated directly or indirectly with the development of resistance against tigecycline have been distinguished by comparing SERS spectral data of TSEC strains with each TREC strain. Moreover, the statistical analysis including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed to check the diagnostic potential of SERS for the differentiation among TREC and TSEC strains. The qualitative identification and differentiation between resistant and sensitive strains and among individual strains have been efficiently done by performing both PCA and HCA. The successful discrimination among TREC and TSEC at the strain level is performed by PLS-DA with 98% area under ROC curve, 100% sensitivity, 98.7% specificity and 100% accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.119831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!