On location for cannabinoid control of multimodal behavior.

Neuron

Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore St. HSF III 9179, Baltimore, MD 21201, USA. Electronic address:

Published: May 2021

In this issue of Neuron, Soria-Gomez et al. (2021) investigate whether activation of the type 1 cannabinoid receptor at specific subcellular locations within a single neural circuit produces multimodal behavior. Their results demonstrate that location matters: striatonigral mitochondrial CB1 drives catalepsy while striatonigral plasma membrane CB1 receptors enable antinociception.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2021.04.013DOI Listing

Publication Analysis

Top Keywords

multimodal behavior
8
location cannabinoid
4
cannabinoid control
4
control multimodal
4
behavior issue
4
issue neuron
4
neuron soria-gomez
4
soria-gomez et al
4
et al 2021
4
2021 investigate
4

Similar Publications

The study of the neural circuitry underlying complex mammalian decision-making, particularly cognitive flexibility, is critical for understanding psychiatric disorders. To test cognitive flexibility, as well as potentially other decision-making paradigms involving multimodal sensory perception, we developed FlexRig, an open-source, modular behavioral platform for use in head-fixed mice. FlexRig enables the administration of tasks relying upon olfactory, somatosensory, and/or auditory cues and employing left and right licking as a behavior readout and reward delivery mechanism.

View Article and Find Full Text PDF

Objectives: To explore the lived experiences of patients with advanced pancreatic cancer enrolled in a patient-reported outcomes (PROs) management programme and to preliminarily understand how PROs management influences various aspects of patient care and overall quality of life.

Design: A qualitative phenomenological study.

Setting: A national cancer care centre in Southwest China specialised in cancer care, with a comprehensive PROs management programme.

View Article and Find Full Text PDF

Latest clinical frontiers related to autism diagnostic strategies.

Cell Rep Med

January 2025

DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.

The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and reported symptoms, supplemented by rating scales/interviews/structured observational evaluations-which is influenced by the clinician's knowledge and experience-with no established diagnostic biomarkers. A growing body of research has been conducted over the past decades to improve diagnostic accuracy. Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of machine learning/artificial intelligence, and research on candidate diagnostic biomarkers.

View Article and Find Full Text PDF

ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging.

Biosens Bioelectron

January 2025

Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:

In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!