Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large and non-volatile electric field control of magnetization is promising to develop memory devices with reduced energy consumption. Herein, we report the electric field control of magnetization with a non-volatile memory effect in an intermediate band Nd0.5Sr0.5MnO3 film grown on a (011)-cut 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal. Applying an electric field across the ferroelectric PMN-PT increases the magnetization of the Nd0.5Sr0.5MnO3 film along both in-plane [100] and [011[combining macron]] directions. Moreover, the magnetization does not recover to its original state after withdrawal of the electric field at temperatures below 70 K, demonstrating a non-volatile memory effect. Detailed investigation showed that (011)-PMN-PT exhibits an anisotropic in-plane strain due to an electric field-induced rhombohedral to orthorhombic phase transition. This electric field-induced anisotropic strain can dynamically transfer to Nd0.5Sr0.5MnO3 film and modulate the magnetization of the Nd0.5Sr0.5MnO3 film through adjusting its phase balance between ferromagnetic (FM) and charge-orbital ordered antiferromagnetic (COO AFM) phases. The non-volatile memory effect can be ascribed to the competition of thermal energy and energy barriers between the FM and COO AFM phases at low temperatures. This work broadens the knowledge of electric field control of magnetism in the intermediate band-manganite ferromagnetic/ferroelectric multiferroic heterostructures, and may also pave a way for the control of antiferromagnetism and to design antiferromagnet-based memories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr00242b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!