A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electric field control of magnetism through modulating phase separation in (011)-NdSrMnO/PMN-PT heterostructures. | LitMetric

Electric field control of magnetism through modulating phase separation in (011)-NdSrMnO/PMN-PT heterostructures.

Nanoscale

Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.

Published: May 2021

Large and non-volatile electric field control of magnetization is promising to develop memory devices with reduced energy consumption. Herein, we report the electric field control of magnetization with a non-volatile memory effect in an intermediate band Nd0.5Sr0.5MnO3 film grown on a (011)-cut 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal. Applying an electric field across the ferroelectric PMN-PT increases the magnetization of the Nd0.5Sr0.5MnO3 film along both in-plane [100] and [011[combining macron]] directions. Moreover, the magnetization does not recover to its original state after withdrawal of the electric field at temperatures below 70 K, demonstrating a non-volatile memory effect. Detailed investigation showed that (011)-PMN-PT exhibits an anisotropic in-plane strain due to an electric field-induced rhombohedral to orthorhombic phase transition. This electric field-induced anisotropic strain can dynamically transfer to Nd0.5Sr0.5MnO3 film and modulate the magnetization of the Nd0.5Sr0.5MnO3 film through adjusting its phase balance between ferromagnetic (FM) and charge-orbital ordered antiferromagnetic (COO AFM) phases. The non-volatile memory effect can be ascribed to the competition of thermal energy and energy barriers between the FM and COO AFM phases at low temperatures. This work broadens the knowledge of electric field control of magnetism in the intermediate band-manganite ferromagnetic/ferroelectric multiferroic heterostructures, and may also pave a way for the control of antiferromagnetism and to design antiferromagnet-based memories.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr00242bDOI Listing

Publication Analysis

Top Keywords

electric field
24
field control
16
nd05sr05mno3 film
16
non-volatile memory
12
electric
8
control magnetism
8
control magnetization
8
magnetization nd05sr05mno3
8
electric field-induced
8
coo afm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!