High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors.

ACS Appl Mater Interfaces

State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

Published: May 2021

High-performance stretchable strain sensors, particularly those with high sensitivity and broad sensing range, are highly important for wearable devices. Herein, a novel auxetic bilayer conductive mesh strain sensor (ABSS), composed of multi-hardness silicones, is proposed and fabricated by the direct ink writing 3D printing and ink spraying technique. The bilayer conductive mesh comprises a thin layer of high-conductive and crack-prone single-walled carbon nanotubes (SWCNTs) coated on a stretchable carbon-black-doped Ecoflex silicone rubber (CB/Ecoflex) mesh. The former serves as the dominant sensing material by generating SWCNT cracks in the full strain range, while the latter mainly plays the roles of both generating the resistance change and maintaining the conductive paths under high strain conditions. The presence of high-hardness auxetic frame contributes to the formation of longitudinal SWCNT cracks on transverse meshes, enhancing the sensitivity of the sensors. It is shown that the synergistic effect of the bilayer conductive mesh, strain concentration, and auxetic deformation strategy endow ABSS with a high gauge factor (∼ 13.4) that is 6.6 times larger than that of the common sensor. Additionally, this study demonstrates the superior sensing performance of the ABSS for wearable applications including swallowing recognition, respiration monitoring, and joint movement detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c06295DOI Listing

Publication Analysis

Top Keywords

bilayer conductive
16
conductive mesh
12
auxetic bilayer
8
stretchable strain
8
strain sensors
8
mesh strain
8
swcnt cracks
8
strain
6
conductive
5
high-performance auxetic
4

Similar Publications

Direct View of Gate-Tunable Miniband Dispersion in Graphene Superlattices Near the Magic Twist Angle.

ACS Nano

January 2025

Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.

Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Objective: To conduct a systematic review on the masking ability of subtractively and additively manufactured dental ceramics.

Materials And Methods: The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The electronic search was carried out through MEDLINE, Scopus, and Website of Science databases with a date restriction being from 2001 onwards.

View Article and Find Full Text PDF

It is well established that the confinement of reactants to two dimensions influences their reactivity. However, such confinement is often dominated by charge transfer effects between the reactants and the confining walls, in particular if the walls are conductive. Also, the reactivity of carbenes on metal surfaces is significantly affected by the charge transfer between the carbene and the metal, rendering the carbene more nucleophilic or electrophilic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!