AI Article Synopsis

  • Microbial contamination in wounds, especially from bacterial biofilms, can delay healing, prompting the development of a new ointment combining pectinic acid (PG) and caprylic acid (CAP) that shows promise in eradicating pathogens with low toxicity.
  • In vitro tests demonstrated that the PG+CAP ointment effectively reduced microbial biofilms, leading to further evaluation in live porcine models with regular application over four weeks.
  • Results indicated that PG+CAP not only improved wound healing more than traditional ointment controls but also safely eradicated bacteria, suggesting its potential as a non-antibiotic treatment for infected wounds in further research.

Article Abstract

Microbial contamination of wounds is a significant problem that delays healing, particularly when bacterial biofilms are present. A novel combination of pectinic acid (PG) + caprylic acid (CAP) was previously found in vitro to be highly effective in eradicating various pathogens in biofilms with minimal cytotoxicity. In this study, a novel wound ointment was formulated with PG + CAP and first assessed in vitro using a well-established biofilm eradication model. In vitro, the PG + CAP ointment was shown to be efficacious in reducing the microbial biofilms. This ointment was then tested in vivo in two pilot porcine wound healing models, with and without Staphylococcus aureus microbial challenge. Ointments were applied to each wound daily, and healing by wound closure area measurement was assessed weekly over 4 weeks. After 4 weeks, pigs were sacrificed and wounds were scored for reepithelialization, inflammation, granulation tissue, and collagen deposition. We compared PG + CAP to hydroxyethylcellulose + glycerol ointment base (control) and MediHoney (comparator). In the porcine microbial challenge model, the novel antimicrobial PG + CAP wound ointment rapidly eradicated bacterial organisms embedded in wounds, was safe and well-tolerated, and was associated with enhanced healing compared to ointment base and MediHoney. Specifically, the cumulative histopathology, reepithelialization of epidermis, and mature granulation tissue in the wound bed was significantly better with PG + CAP than with control and MediHoney treatments. This ointment warrants further study as a non-antibiotic ointment for use in treating a wide array of infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12922DOI Listing

Publication Analysis

Top Keywords

ointment
9
novel antimicrobial
8
wound healing
8
wound ointment
8
microbial challenge
8
granulation tissue
8
ointment base
8
control medihoney
8
wound
7
healing
5

Similar Publications

Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization.

Nat Commun

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.

View Article and Find Full Text PDF

Background: Contact lens discomfort (CLD) is a common problem for CL wearers, and patients with CLD often have changes in meibomian gland function and structure. In a Phase 2 trial AZR-MD-001 0.5% (AZR) ophthalmic ointment improved meibomian gland dysfunction (MGD) in non-lens wearers.

View Article and Find Full Text PDF

In vitro antibacterial and antibiofilm effects of mupirocin spray against Staphylococcus pseudintermedius.

Pol J Vet Sci

December 2024

Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Korea.

Mupirocin is an effective antibiotic for infectious skin diseases. However, mupirocin is formulated as an ointment and is difficult to apply in canine systemic pyoderma. Therefore, many clinicians reformulate mupirocin off-label ointment into a spray.

View Article and Find Full Text PDF

Enhancing transdermal delivery of chrysomycin A for the treatment of cutaneous melanoma and MRSA infections using Skin-Penetrating Peptide-Functionalized deformable liposomes.

Int J Pharm

December 2024

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China. Electronic address:

Article Synopsis
  • Transdermal drug delivery using SPACE-modified liposomal chrysomycin A (CA@SPACE-LP) shows promise for treating skin diseases like melanoma and MRSA infections.
  • In vitro studies reveal that CA@SPACE-LP significantly enhances drug penetration into skin layers, achieving a threefold increase in intradermal drug concentration compared to free chrysomycin A.
  • In vivo results indicate that CA@SPACE-LP effectively suppresses melanoma tumor growth by about 60% and outperforms conventional treatments for MRSA, suggesting its potential for combined cancer and infection therapy.
View Article and Find Full Text PDF

Topical Tacrolimus in Vitiligo: Consensus Paper from the Pigmentary Disorders Society.

Clin Cosmet Investig Dermatol

December 2024

Consultant Dermatologist, Indore, Madhya Pradesh, India.

Background: Tacrolimus, a topical calcineurin inhibitor (TCI) with immunomodulatory effects, is considered a viable treatment option for vitiligo. A consensus building exercise was undertaken to determine the role and clinical utility of topical tacrolimus in the management of vitiligo using input from experts in the field of dermatology.

Methods: Seventeen experts collaborated to create consensus statements using a modified Delphi methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!