p70S6K on astrocytes protects dopamine neurons from 1-methyl-4-phenylpyridinium neurotoxicity.

Glia

Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea.

Published: September 2021

Our recent finding has demonstrated that astrocytes confer neuroprotection by endogenously producing ciliary neurotrophic factor (CNTF) via transient receptor potential vanilloid 1 (TRPV1) in Parkinson's disease (PD). In this study, the possible molecular target for TRPV1-mediated CNTF production and its neuroprotective effects on dopamine neurons were further investigated. For comparison, glial cell-line derived neurotrophic factor (GDNF) was also examined. The results show that TRPV1-ribosomal protein 70 S6 kinase (p70S6K) signaling on astrocytes produces endogenous CNTF in the SN of MPP -lesioned rat. By marked contrast, the expression of GDNF on astrocytes is independent of TRPV1-p70S6K signaling. Administration of a TRPV1 agonist, capsaicin, increases levels of phosphorylated p70S6K (p-p70S6K; activation of p70S6K) on astrocytes, resulting in the survival of dopamine neurons and behavioral recovery through endogenous production of CNTF in the MPP -lesioned rat model of PD. Immunohistochemical analysis reveals expression of p-p70S6K on astrocytes in the SN of PD patients, indicating relevance to human PD. The present in vivo data is the first to demonstrate that astrocytic TRPV1-p70S6K signaling plays a pivotal role as endogenous neuroprotective, and it may constitute a novel therapeutic target for treating PD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24013DOI Listing

Publication Analysis

Top Keywords

dopamine neurons
12
p70s6k astrocytes
8
neurotrophic factor
8
cntf mpp
8
mpp -lesioned
8
-lesioned rat
8
trpv1-p70s6k signaling
8
astrocytes
5
p70s6k
4
astrocytes protects
4

Similar Publications

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.

View Article and Find Full Text PDF

Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.

Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF

Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits.

Neurosci Biobehav Rev

December 2024

Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada. Electronic address:

The paraventricular nucleus of the thalamus (PVT) is generating interest because of evidence establishing a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!