CeLaVi: an interactive cell lineage visualization tool.

Nucleic Acids Res

Centre for Life's Origins and Evolution, Department of Genetics Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.

Published: July 2021

AI Article Synopsis

  • Recent advancements in genetics and imaging technology are enabling researchers to reconstruct cell lineages, which track the history of cell divisions using live microscopy and molecular recorders.
  • A key research goal is to combine this lineage information with spatial data and cellular identities to create a more comprehensive understanding of cell relationships.
  • The web-based tool CeLaVi facilitates this integration by allowing users to interact with cell lineage data, visualize spatial distributions and cell characteristics in 3D, and annotate cells, enhancing the exploration of complex biological information.

Article Abstract

Recent innovations in genetics and imaging are providing the means to reconstruct cell lineages, either by tracking cell divisions using live microscopy, or by deducing the history of cells using molecular recorders. A cell lineage on its own, however, is simply a description of cell divisions as branching events. A major goal of current research is to integrate this description of cell relationships with information about the spatial distribution and identities of the cells those divisions produce. Visualizing, interpreting and exploring these complex data in an intuitive manner requires the development of new tools. Here we present CeLaVi, a web-based visualization tool that allows users to navigate and interact with a representation of cell lineages, whilst simultaneously visualizing the spatial distribution, identities and properties of cells. CeLaVi's principal functions include the ability to explore and manipulate the cell lineage tree; to visualise the spatial distribution of cell clones at different depths of the tree; to colour cells in the 3D viewer based on lineage relationships; to visualise various cell qualities on the 3D viewer (e.g. gene expression, cell type) and to annotate selected cells/clones. All these capabilities are demonstrated with four different example data sets. CeLaVi is available at http://www.celavi.pro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265160PMC
http://dx.doi.org/10.1093/nar/gkab325DOI Listing

Publication Analysis

Top Keywords

cell lineage
12
spatial distribution
12
cell
11
visualization tool
8
cell lineages
8
cell divisions
8
description cell
8
distribution identities
8
celavi interactive
4
interactive cell
4

Similar Publications

A speedy cocktail.

Nat Chem Biol

January 2025

Center for Cell Lineage and Development, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

View Article and Find Full Text PDF

Infiltrating plasma cells maintain glioblastoma stem cells through IgG-Tumor binding.

Cancer Cell

December 2024

National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:

Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) are consistently discovering genetic variants linked to the risk of developing this neurodegenerative condition. However, the effect size of the shared associated loci varies across populations as well as each population can have unique associations. This phenomenon could be explained by ancestry-dependent changes in the genomic regulatory architecture (GRA) influencing the expression of these genes, similar to the effect of different local ancestry on the risk of AD in APOE4 carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!