Promoted Aggregation of Aβ on Lipid Bilayers in an Open Flowing System.

J Phys Chem Lett

Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.

Published: May 2021

Self-assembly of amyloid-β (Aβ) peptides in nonequilibrium, flowing conditions is associated with pathogenesis of Alzheimer's disease. We examined the role of biologically relevant, nonequilibrium, flowing conditions in the desorption, diffusion, and integration of Aβ-lipid assemblies at the membrane surface using a microchannel connected with microsyringes. A 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) bilayer was formed on a glass substrate and incubated in Aβ solution under either a quiescent condition (no flow) or flowing condition for 24 h. Although dot-like aggregates (<1 μm) comprising Aβ fibrils formed on the DMPC membrane under the quiescent condition, larger plaque-like aggregates formed under the flowing condition, suggesting that nonequilibrium continuous flow governs the cytotoxicity of Aβ species. We propose that Aβ adsorption on the membrane surface involves spontaneous desorption of Aβ-lipid to form self-assembling aggregates, with this accelerated by surface shear forces. These findings suggest that nonequilibrium, flowing conditions influence inter/intra-molecular Aβ-fibril formation to trigger formation of amyloid plaques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c00524DOI Listing

Publication Analysis

Top Keywords

nonequilibrium flowing
8
flowing conditions
8
promoted aggregation
4
aggregation aβ
4
aβ lipid
4
lipid bilayers
4
bilayers open
4
flowing
4
open flowing
4
flowing system
4

Similar Publications

Phase boundaries promote chemical reactions through localized fluxes.

J Chem Phys

January 2025

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.

View Article and Find Full Text PDF

With the use of matter (carbon dioxide, nutrients, and water) and solar energy, phytoplankton produce oxygen and carbohydrates, which are transported to predators through the oceanic food web hierarchy. From the viewpoint of irreversible processes of non-equilibrium thermodynamics, oceanic photosynthesis gives a mechanistic picture of living things characterized by double sets of self-organizations supported by flows of energy and entropy discarded into the ocean environment. This produces biological, ocean circulation, and climate interactions.

View Article and Find Full Text PDF

Single-shot single-beam coherent Raman scattering thermometry based on optically induced air lasing.

Light Sci Appl

November 2024

State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

Thermometric techniques with high accuracy, fast response and ease of implementation are desirable for the study of dynamic combustion environments, transient reacting flows, and non-equilibrium plasmas. Herein, single-shot single-beam coherent Raman scattering (SS-CRS) thermometry is developed, for the first time to our knowledge, by using air lasing as a probe. We show that the air-lasing-assisted CRS signal has a high signal-to-noise ratio enabling single-shot measurements at a 1 kHz repetition rate.

View Article and Find Full Text PDF

Nanofluidics has made significant impacts and advancements in various fields, including ultrafiltration, water desalination, biomedical applications, and energy conversion. These advancements are driven by the distinct behavior of fluids at the nanoscale, where the solid-fluid interaction characteristic lengthscale is in the same order of magnitude as the flow conduits. A key challenge in nanofluidics is understanding hydrodynamic slip, a phenomenon in which fluids flow past solid boundaries with a non-zero surface velocity, deviating from the classical no-slip boundary condition.

View Article and Find Full Text PDF

Large eddy simulations are a popular method for turbulent simulations because of their accuracy and efficiency. In this paper, a coupling algorithm is proposed that combines nonequilibrium moments (NM) and the volumetric strain-stretching (VSS) model within the framework of the lattice Boltzmann method (LBM). This algorithm establishes a relation between the NM and the eddy viscosity by using a special calculation form of the VSS model and Chapman-Enskog analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!