The single-phase binary nickel vanadate Ni2V2O7 was successfully synthesized by a simple solid-state method to explore novel anode materials for lithium-ion batteries. After an activation process, the Ni2V2O7 electrode exhibited excellent electrochemical performance with a stable, high specific capacity of about 960 mA h g-1 at a current density of 100 mA g-1, which is attributed to the multiple valence states and the synergistic effect of the transition elements V and Ni. Even at a high current density of 2000 mA g-1, a stable specific capacity of about 400 mA h g-1 was still obtained. Considering the influence of the activation process on the electrochemical performance of the Ni2V2O7 electrode, we studied the origin of the excellent electrochemical performance, where the improved lithium diffusion coefficient and increased pseudocapacitive contribution caused by the activation process led to a significant improvement in the electrochemical performance, including rate capacity and cycle stability. By combining in situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) methods, for the first time, we illustrate the detailed lithium storage mechanism of the Ni2V2O7 electrode during the lithium insertion/extraction process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00983d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!