Influences of oxidation ability on precision in nitrogen isotope measurements of organic reference materials using elemental analysis-isotope ratio mass spectrometry.

Rapid Commun Mass Spectrom

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.

Published: July 2021

Rationale: The precision of the standard measurements of reference materials (RMs) is critical to normalize the raw δ N values of samples to the international scale. Because the measurement configuration is required to moderate the properties of both RMs and samples for obtaining an ideal measurement precision, it is important to determine the appropriate measurement configurations of RMs to achieve accurate nitrogen isotope compositions of samples. Therefore, it is critical to systematically examine RMs for optimizing the configurations and further improve the measurement precision.

Methods: Gas source isotope ratio mass spectrometry (IRMS) coupled with an online elemental analyzer (EA) equipped with a single-quartz reactor was performed to analyze the nitrogen isotope compositions. Some adjustments were made as follows: (a) as the in-house working standard, urea was used to investigate the influences of combustion through moderating the different oxygen injections (0-20 mL) and sample delay times (10-12 s) and optimize the combustion conditions to enhance oxidation ability; (b) CO from the sample gas stream was removed to prevent interferences between CO and N ; (c) international RMs, including USGS40 (l-glutamic), IAEA600 (caffeine), and soil standard (B2153) with a low organic content, were systematically analyzed under the optimized configurations, and the precisions of the δ N values were further examined.

Results: Our results showed that sufficient oxygen should be injected to improve the sample combustion when analyzing δ N in natural samples such as soil or marine sediment with low organic content. In addition, the measurement precision of δ N was affected by the tailing of the CO peak from the gas chromatography column into the subsequent sample measurement if the EA is equipped with a single-quartz reactor column. Our adjustments can produce an optimized repeatability and accuracy of the δ N value, especially for RMs with low organic content, and the uncertainty of the measurements is improved to be better than 0.1‰ under optimized configurations.

Conclusions: The analytical conditions such as the oxygen flow rate and injection time or sample introduction time into the EA need to be adjusted depending on the combustion conditions of the RMs and samples to obtain a reliable accuracy of measurement. We recommend that when analyzing δ N of natural samples such as soil or marine sediment samples with low organic content, more oxygen should be injected to improve the combustion of the samples. In addition, CO should be removed from the sample gas stream before being introduced into the isotope ratio mass spectrometer when the EA is equipped with a single-quartz reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9122DOI Listing

Publication Analysis

Top Keywords

low organic
16
organic content
16
nitrogen isotope
12
ratio mass
12
equipped single-quartz
12
single-quartz reactor
12
oxidation ability
8
reference materials
8
mass spectrometry
8
samples
8

Similar Publications

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!