Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simultaneous cathodic and anodic electrochemiluminescence (ECL) emissions of needle-like nanostructures of Ru(bpy) (RuNDs) as the only luminophore are reported based on different co-reactants. Cathodic ECL was attained from RuNDs/KSO system, while anodic ECL was achieved from RuNDs/black phosphorus quantum dots (BPQDs) system. Ferrocene attached to the hairpin DNA could quench the cathodic and anodic ECL simultaneously. Subsequently, the ECL signals recovered in the presence of tumor marker mucin 1 (MUC1), which made it possible to quantitatively detect MUC1. The variation of ECL signal was related linearly to the concentrations of MUC1 in the range 20 pg mL to 10 ng mL, and the detection limits were calculated to 2.5 pg mL (anodic system, 3σ) and 6.2 pg mL (cathodic system, 3σ), respectively. The recoveries were 97.0%, 105%, and 95.2% obtained from three human serum samples, and the relative standard deviation (RSD) is 5.3%. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones. Simultaneous cathodic and anodic ECL emissions of RuNDs were reported based on different co-reactants. Ferrocene could quench the ECL emission in the cathode and the anode simultaneously. Thus, an aptasensor was constructed based on the variation of ECL intensity. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones by avoiding the false positive signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-021-04833-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!