Nanocavity-enriched Co3O4@ZnCo2O4@NC porous nanowires have been successfully prepared by a two-step annealing process of one-dimensional (1D) coordination polymer precursors. Such unique nanowires with nanocavity-based porous channels can provide a large specific surface area, which allows fast electron/ion transfer and alleviates the volume expansion caused by strain during the charge/discharge processes. While used as the anode material of lithium-ion batteries (LIBs), Co3O4@ZnCo2O4@NC electrodes exhibit outstanding rate capacity and cycling stability, such as a high reversible capacity of 931 mA h g-1 after 50 cycles at a current density of 0.1 A g-1 and a long-term cycling efficiency of 649 mA h g-1 after 600 cycles at 1 A g-1. This coordination polymer template method lays a solid foundation for the design and preparation of bimetal oxide materials with outstanding electrochemical performance for LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt00475aDOI Listing

Publication Analysis

Top Keywords

porous nanowires
8
coordination polymer
8
nanocavity-enriched coo@zncoo@nc
4
coo@zncoo@nc porous
4
nanowires derived
4
derived metal
4
metal coordination
4
coordination polymers
4
polymers fast
4
fast diffusion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!