A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proton-controlled non-exponential photoluminescence in a pyridylamidine-substituted Re(I) complex. | LitMetric

Chemical intuition and well-known design principles can typically be used to create ligand environments in transition metal complexes to deliberately tune reactivity for desired applications. However, intelligent ligand design does not always result in the expected outcomes. Herein we report the synthesis and characterization of a tricarbonyl rhenium (2,2'-bipyridine) 4-pyridylamidine, Re(4-Pam), complex with unexpected photophysical properties. Photoluminescence kinetics of Re(4-Pam) undergoes non-exponential decay, which can be deconvolved into two emission lifetimes. However, upon protonation of the amidine functionality of the 4-pyridylamidine to form Re(4-PamH), a single exponential decay is observed. To understand and rationalize these experimental observations, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are employed. The symmetry or asymmetry of the protonated or deprotonated 4-pyridylamidine ligand, respectively, is the key factor in switching between one and two photoluminescence lifetimes. Specifically, rotation of the dihedral angle formed between the bipyridine and 4-Pam ligand leads to two rotamers of Re(4-Pam) with degenerate triplet- to ground-state transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt01132dDOI Listing

Publication Analysis

Top Keywords

density functional
8
functional theory
8
proton-controlled non-exponential
4
non-exponential photoluminescence
4
photoluminescence pyridylamidine-substituted
4
pyridylamidine-substituted rei
4
rei complex
4
complex chemical
4
chemical intuition
4
intuition well-known
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!