The Pd(0) catalysed cyclisation reactions between tert-butyl propargyl carbonates and 2-aminotosyl benzamides or sulphonamides deliver 1,4-benzodiazepin-5-ones or sultam derivatives, key components of many biologically active compounds. But 2-amino benzamides/sulphonamides require propargyl carbonates substituted at acetylenic carbon to undergo the reaction resulting in the stereoselective formation of the said products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc00793aDOI Listing

Publication Analysis

Top Keywords

propargyl carbonates
8
palladium0-catalysed regioselective
4
regioselective cyclisations
4
cyclisations 2-aminotosyl
4
2-aminotosyl benzamides/sulphonamides
4
benzamides/sulphonamides stereoselective
4
stereoselective synthesis
4
synthesis 3-ylidene-[14]benzodiazepin-5-ones/benzo[][125]thiadiazepine-11-dioxides
4
3-ylidene-[14]benzodiazepin-5-ones/benzo[][125]thiadiazepine-11-dioxides pd0
4
pd0 catalysed
4

Similar Publications

Gold(I)-Catalyzed Nucleophilic Propargylations of Azinium Ions via Hydroxydihydroazine Intermediates.

Chemistry

January 2025

University of Nottingham, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The nucleophilic propargylation of azinium ions with a propargylboronate proceeds efficiently under gold(I) catalysis. A range of N-alkylated pyridinium, quinolinium, and pyrazinium ions undergo propargylation with good yields and high regioselectivities to give various functionalized 1,4-dihydropyridines, 1,2-dihydropyridines, 1,4-dihydroquinolines, 1,2-dihydroquinolines, and 4,5-dihydropyrazines. No allenylation side-products are observed.

View Article and Find Full Text PDF

Oxometallate-Based Ionic Liquid Catalyzed CO-Promoted Hydration of Propargylic Alcohols for α-Hydroxy Ketones Synthesis.

Int J Mol Sci

December 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze this reaction individually under atmospheric CO pressure, volatile organic solvents, and additives.

View Article and Find Full Text PDF

Ni(II)-catalyzed nucleophilic substitution for the synthesis of allenylselenide.

Chem Commun (Camb)

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

A method for synthesizing allenylselenides has been developed using readily available propargyl carbonate and phenylselenol. The reaction is catalyzed by Ni(II) and proceeds a migratory insertion and β-oxygen elimination mechanism. Due to the strong interaction between Se and Ni leading to catalyst deactivation, zinc salt was used to mitigate the deleterious effects of Se anions on the catalyst, thereby facilitating the successful synthesis of the target products.

View Article and Find Full Text PDF

Catalytic Asymmetric Oxidative Coupling between C(sp)-H Bonds and Carboxylic Acids.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.

The direct enantioselective functionalization of C(sp)-H bonds in organic molecules could fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation of these bonds would dramatically change the production methods of chiral alcohols and esters, which are prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through the C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Two novel Pd-catalyzed protocols for the controllable synthesis of benzo[]furo[2,3-]azepines and furo[3,2-]indoles have been developed by intermolecular oxidative annulation of 2-(furan-2-yl)anilines and propargyl carbonates versus intramolecular C-H amination reactions. These two protocols feature great scalability, functional group tolerance, and relatively mild reaction conditions. Notably, the robust methodologies could also provide valuable opportunities for assembling azepine-fused benzothiophene, indole-fused benzothiophene, and indole-fused benzimidazole, which may have potential applications in the synthesis of related pharmaceuticals or polymeric materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!