Recent advances in sensor networks and the Internet of Things (IoT) technologies have led to the gathering of an enormous scale of data. The exploration of such huge quantities of data needs more efficient methods with high analysis accuracy. Artificial Intelligence (AI) techniques such as machine learning and evolutionary algorithms able to provide more precise, faster, and scalable outcomes in big data analytics. Despite this interest, as far as we are aware there is not any complete survey of various artificial intelligence techniques for big data analytics. The present survey aims to study the research done on big data analytics using artificial intelligence techniques. The authors select related research papers using the Systematic Literature Review (SLR) method. Four groups are considered to investigate these mechanisms which are machine learning, knowledge-based and reasoning methods, decision-making algorithms, and search methods and optimization theory. A number of articles are investigated within each category. Furthermore, this survey denotes the strengths and weaknesses of the selected AI-driven big data analytics techniques and discusses the related parameters, comparing them in terms of scalability, efficiency, precision, and privacy. Furthermore, a number of important areas are provided to enhance the big data analytics mechanisms in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053021PMC
http://dx.doi.org/10.7717/peerj-cs.488DOI Listing

Publication Analysis

Top Keywords

big data
24
data analytics
24
artificial intelligence
16
intelligence techniques
12
data
8
machine learning
8
big
6
analytics
6
artificial
4
intelligence approaches
4

Similar Publications

Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.

View Article and Find Full Text PDF

Design and experimental study of tillage depth control system for electric rotary tiller based on LADRC.

Sci Rep

January 2025

The Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions, Wuyi University, Nanping, 354300, Fujian, China.

This paper proposes an adaptive real-time tillage depth control system for electric rotary tillers, based on Linear Active Disturbance Rejection Control (LADRC), to improve tillage depth accuracy in tea garden intercropping with soybeans. The tillage depth control system comprises a body posture sensor, a control unit, and a hybrid stepper motor, integrating sensor data to drive the motor and achieve precise depth control. Real-time displacement sensor signals are compared with target values, enabling closed-loop control of the rotary tiller.

View Article and Find Full Text PDF

In order to reduce the number of parameters in the Chinese herbal medicine recognition model while maintaining accuracy, this paper takes 20 classes of Chinese herbs as the research object and proposes a recognition network based on knowledge distillation and cross-attention - ShuffleCANet (ShuffleNet and Cross-Attention). Firstly, transfer learning was used for experiments on 20 classic networks, and DenseNet and RegNet were selected as dual teacher models. Then, considering the parameter count and recognition accuracy, ShuffleNet was determined as the student model, and a new cross-attention mechanism was proposed.

View Article and Find Full Text PDF

Deep learning (DL) methods have demonstrated remarkable effectiveness in assisting with lung cancer risk prediction tasks using computed tomography (CT) scans. However, the lack of comprehensive comparison and validation of state-of-the-art (SOTA) models in practical settings limits their clinical application. This study aims to review and analyze current SOTA deep learning models for lung cancer risk prediction (malignant-benign classification).

View Article and Find Full Text PDF

Distributed model building and recursive integration for big spatial data modeling.

Biometrics

January 2025

Department of Biostatistics, Brown University, Providence, RI 02912, United States.

Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!