Cyber-attack method and perpetrator prediction using machine learning algorithms.

PeerJ Comput Sci

Department of Computer Engineering, Firat University, Elazığ, Turkey.

Published: April 2021

Cyber-attacks have become one of the biggest problems of the world. They cause serious financial damages to countries and people every day. The increase in cyber-attacks also brings along cyber-crime. The key factors in the fight against crime and criminals are identifying the perpetrators of cyber-crime and understanding the methods of attack. Detecting and avoiding cyber-attacks are difficult tasks. However, researchers have recently been solving these problems by developing security models and making predictions through artificial intelligence methods. A high number of methods of crime prediction are available in the literature. On the other hand, they suffer from a deficiency in predicting cyber-crime and cyber-attack methods. This problem can be tackled by identifying an attack and the perpetrator of such attack, using actual data. The data include the type of crime, gender of perpetrator, damage and methods of attack. The data can be acquired from the applications of the persons who were exposed to cyber-attacks to the forensic units. In this paper, we analyze cyber-crimes in two different models with machine-learning methods and predict the effect of the defined features on the detection of the cyber-attack method and the perpetrator. We used eight machine-learning methods in our approach and concluded that their accuracy ratios were close. The Support Vector Machine Linear was found out to be the most successful in the cyber-attack method, with an accuracy rate of 95.02%. In the first model, we could predict the types of attacks that the victims were likely to be exposed to with a high accuracy. The Logistic Regression was the leading method in detecting attackers with an accuracy rate of 65.42%. In the second model, we predicted whether the perpetrators could be identified by comparing their characteristics. Our results have revealed that the probability of cyber-attack decreases as the education and income level of victim increases. We believe that cyber-crime units will use the proposed model. It will also facilitate the detection of cyber-attacks and make the fight against these attacks easier and more effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049120PMC
http://dx.doi.org/10.7717/peerj-cs.475DOI Listing

Publication Analysis

Top Keywords

cyber-attack method
12
method perpetrator
8
methods attack
8
machine-learning methods
8
accuracy rate
8
methods
7
cyber-attack
5
cyber-attacks
5
perpetrator
4
perpetrator prediction
4

Similar Publications

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

An intelligent hybrid approach combining fuzzy C-means and the sperm whale algorithm for cyber attack detection in IoT networks.

Sci Rep

January 2025

Department of Information Technology Management, Faculty of Management Technology and Information System, Port Said University, Port Said, 42526, Egypt.

The Internet of Things (IoTs) has revolutionized cities, enabling them to become smarter. IoTs play an important role in monitoring the traffic cameras, roads, smart farming, connected vehicles, air quality, water level, humidity, and carbon dioxide pollution levels in city buildings. One of the major challenges of smart cities is the cyber threat to sensitive data.

View Article and Find Full Text PDF

Hybrid quantum enhanced federated learning for cyber attack detection.

Sci Rep

December 2024

Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, 611002, India.

Cyber-attack brings significant threat and become a critical issue in the digital world network security. The conventional procedures developed to detects are centralized and often struggles with concerns like data privacy and communication overheads. Due to this, conventional methods are unable to adapt quickly for different threats.

View Article and Find Full Text PDF

The paper proposes a technique for protecting reconfigurable networks that implements topology rebuilding, which combines immunization and network gaming methods, as a solution for maintaining cyber resilience. Immunization presumes an adaptive set of protective reconfigurations destined to ensure the functioning of a network. It is a protective reconfiguration aimed to preserve/increase the functional quality of the system.

View Article and Find Full Text PDF

Internet of Things (IoT) devices are much closer to users than personal computers used in traditional computing environments. Due to prevalence of IoT devices, even if they are compromised and used in attacks, it is difficult to detect and respond to them. Currently, there has been extensive research on threat modeling for cyberattacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!