Fisetin Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Macrophage.

Biomed Res Int

Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan.

Published: June 2021

Several studies have reported the efficacy and safety of polyphenols in human health; however, the verification of their efficacy remains insufficient. The aim of this study was to examine whether fisetin, one of flavonoids prevalently present in fruits and vegetables, could suppress lipopolysaccharide- (LPS-) induced inflammatory responses in macrophages. LPS increased proinflammatory mRNA abundance (MCP 1, IL-1, and iNOS) but were suppressed by fisetin. The increment of nitric oxide by LPS, an oxidative stress factor, was attenuated by fisetin. In addition, LPS-enhanced phosphorylation of mitogen-activated protein kinase (ERK and JNK) was reduced. Finally, fisetin attenuated the expression or activity of uPA, uPAR, MMP-2, and MMP-9, which are known as associated factors of macrophage recruitment or infiltration. In conclusion, fisetin is a promising therapeutic agent for macrophage-related inflammation diseases, like sepsis and atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057890PMC
http://dx.doi.org/10.1155/2021/5570885DOI Listing

Publication Analysis

Top Keywords

inflammatory responses
8
fisetin
6
fisetin attenuates
4
attenuates lipopolysaccharide-induced
4
lipopolysaccharide-induced inflammatory
4
responses macrophage
4
macrophage studies
4
studies reported
4
reported efficacy
4
efficacy safety
4

Similar Publications

Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells.

Am J Cancer Res

December 2024

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.

The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.

View Article and Find Full Text PDF

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage, as observed in diseases characterized by influx of neutrophils such as atherosclerosis and non-healing wounds. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ∼5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!