Novel tools and methods for monitoring marine environments can improve efficiency but must not compromise long-term data records. Quantitative comparisons between new and existing methods are therefore required to assess their compatibility for monitoring. Monitoring of shallow water coral reefs is typically conducted using diver-based collection of benthic images along transects. Diverless systems for obtaining underwater images (e.g. towed-cameras, remotely operated vehicles, autonomous underwater vehicles) are increasingly used for mapping coral reefs. Of these imaging platforms, towed-cameras offer a practical, low cost and efficient method for surveys but their utility for repeated measures in monitoring studies has not been tested. We quantitatively compare a towed-camera approach to repeated surveys of shallow water coral reef benthic assemblages on fixed transects, relative to benchmark data from diver photo-transects. Differences in the percent cover detected by the two methods was partly explained by differences in the morphology of benthic groups. The reef habitat and physical descriptors of the site-slope, depth and structural complexity-also influenced the comparability of data, with differences between the tow-camera and the diver data increasing with structural complexity and slope. Differences between the methods decreased when a greater number of images were collected per tow-camera transect. We attribute lower image quality (variable perspective, exposure and focal distance) and lower spatial accuracy and precision of the towed-camera transects as the key reasons for differences in the data from the two methods and suggest changes to the sampling design to improve the application of tow-cameras to monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052974 | PMC |
http://dx.doi.org/10.7717/peerj.11090 | DOI Listing |
Ecol Evol
January 2025
Minderoo Foundation Perth Western Australia Australia.
Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.
View Article and Find Full Text PDFWater Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFSci Total Environ
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:
Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking.
View Article and Find Full Text PDFSci Total Environ
January 2025
Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.
Microb Ecol
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!