The objective was to investigate the multidrug resistance and presence of class 1 and 2 integrons in 300 isolates obtained from 20 broiler farms during three rearing periods (one-day-old chicks, thirty-day-old chickens, and one day before slaughter) in Fars, South Iran. Results showed that 81.00%, 82.00%, and 85.00% of isolates were multidrug-resistant on the first day, thirty-day-old chickens, and one day before slaughter, respectively. Multidrug-resistant isolates were further examined for the presence of class 1 and 2 integrons using PCR assay. The existence of class 1 integron-integrase gene () was confirmed in 68.40%, 72.70%, and 60.90% of multidrug-resistant isolates from stage 1, stage 2, and stage 3 of the rearing period, respectively. The frequency of class 2 integron-integrase gene () during the first to the third stage of sampling was 2.60%, 25.50%, and 30.40%. Also, sequence analysis of the cassette arrays within class 1 integron revealed the presence of the genes associated with resistance for trimethoprim (A), streptomycin (A), erythromycin (A), and F genes. The results revealed that percentages of antimicrobial resistance in isolates were significantly higher in the middle and end stages of the rearing period. In conclusion, widespread dissemination of class 1 integrons in all three stages and rising trends of class 2 integrons existence in isolates during the rearing period of broiler chickens could exacerbate the spread of resistance factors among bacteria in the poultry industry. Future research is needed to clarify its implication for human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094138PMC
http://dx.doi.org/10.30466/vrf.2019.96366.2309DOI Listing

Publication Analysis

Top Keywords

class integrons
20
rearing period
12
multidrug resistance
8
class
8
broiler chickens
8
presence class
8
thirty-day-old chickens
8
chickens day
8
day slaughter
8
multidrug-resistant isolates
8

Similar Publications

The Difference a Year Can Make: How Antibiotic Resistance Mechanisms in Have Changed in Northwestern Transylvania.

Biomolecules

December 2024

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.

This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the presence of class 1, 2, and 3 integrons in Acinetobacter baumannii isolates, evaluate the relationship between integrons and antibiotic resistance and determine the clonal relationship between isolates by PFGE method.

Methodology: A total of 188 A. baumannii strains between February 2020 and March 2023 were included in the study.

View Article and Find Full Text PDF

Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.

View Article and Find Full Text PDF

Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!