Objective: The aim of this study is to validate the clinical use of flattening filter-free (FFF) beam-based volumetric-modulated arc therapy (VMAT) in synchronous bilateral breast carcinoma (SBBC) patient treatments and to compare with flattening filtered (FF) beam-based VMAT.
Materials And Methods: Computed tomography images of 15 SBBC patients were taken for this study. A dose of 50 Gy in 25 fractions was prescribed to planning target volume (PTV). VMAT plans were generated using both FFF and FF 6 MV X-ray beams in Eclipse treatment planning system. PTV and organs at risk (OARs) doses were analyzed quantitatively using dose-volume histograms (DVHs) to meet plan objectives. Pretreatment point and planar dosimetry were performed.
Results: The findings were reported as mean ± 1 standard deviation. PTV volume receiving 95% of the prescribed dose was 95.71% ± 0.65% for FF-VMAT and 95.45% ± 1.33% for FFF-VMAT ( = 0.743). Conformity index was 1.12 ± 0.31 (FF-VMAT) and 1.12 ± 0.02 (FFF-VMAT). Right lung mean dose was 10.95 ± 1.33 Gy (FF-VMAT) and 10.60 ± 98.5 (FFF-VMAT). Left lung mean dose was 9.73 ± 1.56 (FF-VMAT) and 9.61 ± 1.53 Gy (FFF-VMAT). Tumor control probability (TCP) was 99.68% ± 0.02% (FF-VMAT) and 99.67% ± 0.01% (FFF-VMAT) ( = 0.390). Uncomplicated TCP was 98.72% ± 0.02% (FF-VMAT) and 98.72% ± 0.01% (FFF-VMAT) ( = 0.508).
Conclusion: The planning objective parameters achieved using FFF-based VMAT showed that FFF can also be used clinically to treat bilateral breast carcinomas and the low-dose lung volumes were still lesser with FFF-VMAT plans than FF-VMAT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074717 | PMC |
http://dx.doi.org/10.4103/jmp.JMP_32_20 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!