The land ice contribution to global mean sea level rise has not yet been predicted using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models, but primarily used previous-generation scenarios and climate models, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-03302-y | DOI Listing |
Cureus
November 2024
Respiratory Diseases Clinic, Hospital Regional de Alta Especialidad de la Península de Yucatan, Merida, MEX.
Patients with severe eosinophilic asthma (SEA) can benefit from biologic therapy but some subjects may present an immune-mediated side effect. These patients will not meet the treatment goals and might have an increased risk of exacerbations. Monitoring these patients by determining blood eosinophil (BE) levels could be one of the tools that may allow a follow-up to prevent a worsening of asthma or exacerbations.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Faculty of the Sea and Environment, Universidad Del Pacífico, Guayaquil, Ecuador.
Cigarette butts are classified as plastic waste due to their composition of cellulose acetate fibers and are commonly found in beach sand. Their persistence in the environment, low biodegradability, and potential to interact with metals and metalloids during the aging process make them a significant subject of interest for research on coastal marine ecosystems. The aim of this study is to investigate the presence of metals such as hexavalent chromium Cr (VI), cadmium (Cd), and the metalloid arsenic (As) in cigarette butts (CBs), cigarette butt fibers (CBFs), and sand on a tourist beach in Cartagena, Colombia.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, China.
Plateau acclimatization involves adaptive changes in the body's neurohumoral regulation and metabolic processes due to hypoxic conditions at high altitudes. This study utilizes Olink targeted proteomics to analyze serum protein expression differences in Han Chinese individuals acclimatized for 6 months-1 year at 4500 and 5300 m altitudes, compared to those residing at sea level. The objective is to elucidate the proteins' roles in tissue and cellular adaptation to hypoxia.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States. Electronic address:
Multiplexed proteomics has become a powerful tool for investigating biological systems. Using balancer-peptide conjugates (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!