Endogenous arginine derivatives homoarginine, asymmetric dimethylarginine (ADMA) and symmetric dimethyarginine (SDMA) are independent mortality predictors in atherosclerotic cardiovascular disease (CVD). Our study reports the first analysis, whether homoarginine, ADMA and SDMA predict venous thromboembolism (VTE) recurrence and overall mortality in patients with suspected acute VTE. We assessed serum levels of homoarginine, ADMA and SDMA by LC-MS/MS in 865 individuals from a prospective consecutive cohort of patients with clinical suspicion of VTE. The median follow-up time for mortality was 1196 days. VTE was confirmed by imaging in 418 patients and excluded in 447 patients. Low levels of homoarginine and high levels of ADMA or SDMA independently predicted all-cause mortality after adjustment for sex, age, oral anticoagulants, body mass index, arterial hypertension, diabetes mellitus, smoking, dyslipidemia, chronic heart failure, history of stroke, creatinine and cancer both in patients with VTE and without VTE. Interestingly, none of those parameters was predictive for VTE recurrence. We provide the first report that low circulating levels of homoarginine and high circulating levels of ADMA and SDMA independently predict all-cause mortality in patients with suspected VTE. These parameters might serve as markers of "frailty" and should be considered for future risk stratification approaches in this clinical population. Taking into account that homoarginine supplementation is protective in animal models of CVD and safe in healthy human volunteers, our study provides the basis for future homoarginine supplementation studies in patients with suspected VTE to investigate possible direct protective effects of homoarginine in this population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100302 | PMC |
http://dx.doi.org/10.1038/s41598-021-88986-y | DOI Listing |
Antioxidants (Basel)
January 2025
Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan.
Tacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) is a serious issue for long-term graft survival in kidney transplantation. However, the pathophysiology of TAC nephrotoxicity remains unclear. In this study, we analyzed whole blood samples from mice that developed TAC nephrotoxicity in order to discover its mechanism.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Endometriosis (EMs) is a common gynecological disease accompanied by metabolic disturbances. However, the causality between metabolites and the risk of EMs remains unclear. We conducted a 2-sample Mendelian randomization (MR) analysis using the publicly available genome-wide association study (GWAS) of 486 circulating metabolites and EMs.
View Article and Find Full Text PDFNitric Oxide
February 2025
Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland. Electronic address:
l-arginine derivatives (ADMA, SDMA, NMMA) are endogenous inhibitors of nitric oxide (NO֗) production, which is essential in critical brain processes including blood-brain barrier (BBB) integrity and long-term potentiation (LTP). ADMA and NMMA are degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues. There is no data concerning the impact of metabotropic glutamate receptors (mGlu) ligands on this aspect of brain physiology.
View Article and Find Full Text PDFBiochimie
November 2024
Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain; CIBERobn ISCIII, Spain. Electronic address:
Arch Virol
November 2024
Center of Human and Molecular Biology (ZHMB), Institute of Human Genetics, Saarland University (USAAR), Kirrbergerstraße, Haus 60, Building 60, D-66421, Homburg/Saar, Germany.
Epstein-Barr virus nuclear antigen 1 (EBNA1) contains two arginine-glycine (RG) repeats that contain symmetric/asymmetric dimethylarginine (SDMA/ADMA) and monomethylarginine (MMA) residues. We generated mouse monoclonal antibodies directed against a monomethylated GRGRGG-containing repeat located between amino acids 328 and 377 of EBNA1. In addition to detecting MMA-modified EBNA1, we also had the goal of identifying cellular proteins that bind to MMA-modified EBNA1 in EBV-positive Raji cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!