Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most demersal fishes are difficult to observe and track due to methodological and analytical constraints. We used an acoustic positioning system to elucidate the horizontal and vertical movements of 44 red snapper (Lutjanus campechanus) off North Carolina, USA, in 2019. Mean movement rate and distance off bottom varied by individual, with larger red snapper generally moving faster and spending more time farther off the bottom than smaller individuals. We used generalized additive mixed models that accounted for temporal autocorrelation in the data to show that mean hourly red snapper movement rate was lower during the day than at night and was negatively related to bottom water temperature. Moreover, red snapper spent more time off the bottom during the day than at night, and vertical movements were mostly related to bottom upwelling events that sporadically occurred in May-July. Our results and previous observations suggest that red snapper feed primarily on benthic organisms at night, and display diel vertical migration (i.e., thermotaxis) up to warmer waters (when present) during the day to aid digestive efficiency. Movement is a central organizing feature in ecology, and the sustainable management of fish will benefit from a better understanding of the timing and causes of fish movement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099871 | PMC |
http://dx.doi.org/10.1038/s41598-021-88806-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!