Purpose: Hamstring muscle architecture may be associated with sprint performance and the risk of sustaining a muscle injury, both of which increase during puberty. In this study, we investigated the m. biceps femoris long head (BFlh) cross-sectional area (ACSA), fascicle length (FL) and pennation angle (PA), and sprint performance as well as their relationship in under 13 to 15 youth soccer players.

Methods: We measured 85 players in under-13 (n = 29, age = 12.5 [0.1] y, height = 155.3 [6.2] cm, weight = 43.9 [7.6] kg), under-14 (n = 25, age = 13.5 [0.3] y, height = 160.6 [7.7] cm, weight = 47.0 [6.8] kg), and under-15 (n = 31, age = 14.4 [0.3] y, height = 170.0 [7.7] cm, weight = 58.1 [8.8] kg) teams. We used ultrasound to measure BFlh ACSA, FL and PA, and sprint tests to assess 10- and 30-m sprint time, maximal velocity  (vmax), and maximal acceleration (αmax). We calculated Pearson r to assess the relationship between sprint ability and architectural parameters.

Results: All muscle architectural parameters increased from the under-13 to the under-15 age group (BFlh ACSA = 37%, BFlh FL = 11%, BFlh PA = 8%). All sprint performance parameters improved from the under-13 to under-15 age categories (30-m time = 7%, 10-m time = 4%, vmax = 9%, αmax = 7%). The BFlh ACSA was correlated with 30-m sprint time (r = -.61 (95% compatibility interval [CI] [-.73, -.45]) and vmax (r = .61, 95% CI [.45, .72]). A combination of BFlh ACSA and age best predicted 30-m time (R² = .47 [.33, .62]) and 10-m time (R² = .23 [.08, .38]).

Conclusions: Muscle architectural as well as sprint performance parameters increase from the under-13 to under-15 age groups. Even though we found correlations for all assessed architectural parameters, BFlh ACSA was best related to the assessed sprint parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijspp.2020-0726DOI Listing

Publication Analysis

Top Keywords

bflh acsa
20
sprint performance
16
under-15 age
16
under-13 under-15
12
sprint
10
biceps femoris
8
femoris long
8
long head
8
sprint ability
8
youth soccer
8

Similar Publications

Stress-strain relationship of individual hamstring muscles: A human cadaver study.

J Mech Behav Biomed Mater

May 2024

Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan. Electronic address:

Article Synopsis
  • The study investigated the differences in mechanical properties of the hamstring muscles, focusing on the stress-strain relationship using cadaver specimens.
  • Researchers dissected the long heads of biceps femoris, semimembranosus, and semitendinosus muscles from eight cadavers and measured their responses to tensile loads.
  • Results showed that the biceps femoris and semimembranosus experienced significantly higher stress levels compared to the semitendinosus at the same level of strain, indicating varying mechanical properties among the hamstring muscles.
View Article and Find Full Text PDF

Relationship between shear elastic modulus and passive muscle force in human hamstring muscles using a Thiel soft-embalmed cadaver.

J Med Ultrason (2001)

July 2023

Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Purpose: Assessing muscle flexibility and architecture is important for hamstring strain injury (HSI) prevention. We investigated the relationship between shear modulus and passive force in hamstring muscles at different sites and the effect of muscle architecture on the slope of the shear modulus-passive force using shear wave elastography (SWE).

Methods: The biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles were dissected from nine Thiel-embalmed cadavers and fixed to a custom-made mechanical testing machine.

View Article and Find Full Text PDF

Lower extremity injuries are common in competitive alpine skiers, and the knee and lower leg are often affected. The hamstring muscles, especially the biceps femoris long head (BFlh), can stabilize the knee and the hip and may counteract various adverse loading patterns during typical mechanisms leading to severe lower extremity injuries. The aim of the present study was to describe BFlh morphology in youth competitive alpine skiers in relation to sex, age and biological maturation and to investigate its association with the occurrence of traumatic lower extremity injuries in the upcoming season.

View Article and Find Full Text PDF

The main aim was to examine the load bearing of individual hamstring muscles in different contraction types and intensities, through local stiffness measurement by shear wave elastography (SWE). A secondary aim was to examine the relationship between the SWE stiffness measure and hamstrings morphology. Ten healthy males (age 22.

View Article and Find Full Text PDF

Purpose: Hamstring muscle architecture may be associated with sprint performance and the risk of sustaining a muscle injury, both of which increase during puberty. In this study, we investigated the m. biceps femoris long head (BFlh) cross-sectional area (ACSA), fascicle length (FL) and pennation angle (PA), and sprint performance as well as their relationship in under 13 to 15 youth soccer players.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!