Background/aim: Glioblastoma multiforme (GBM) is a lethal disease with a high rate of chemoresistance to temozolomide (TMZ). The aim of the study was to establish a TMZ-resistant subline from the GBM-8401 cell line to determine the mechanisms of resistance and identify novel effective therapeutics for TMZ-resistant GBM.

Materials And Methods: Comparative transcriptome analysis of GBM-8401/TMZR cells and the parental line was performed using Ion Torrent sequencing. Differentially expressed genes (DEGs) between the GBM-8401/TMZR and GBM-8401 cell lines were analyzed.

Results: Transcriptomic profiling of GBM-8401/TMZR cells revealed DEGs involved in the retinoblastoma (RB) signaling, DNA damage response (DDR) pathway, and DNA repair mechanisms.

Conclusion: In vitro and in vivo cell-based GBM models should be used in further biomedical studies to investigate the underlying mechanisms of TMZ-resistant GBM.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.15008DOI Listing

Publication Analysis

Top Keywords

glioblastoma multiforme
8
comparative transcriptome
8
transcriptome analysis
8
gbm-8401 cell
8
gbm-8401/tmzr cells
8
establishment novel
4
novel temozolomide
4
temozolomide resistant
4
resistant subline
4
subline glioblastoma
4

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.

View Article and Find Full Text PDF

Purpose: Glioblastoma multiforme (GBM) is an aggressive brain tumor. This meta-analysis investigates the association between HOTAIR expression levels and GBM.

Methods: We searched the literature for studies on HOTAIR expression in GBM patients.

View Article and Find Full Text PDF

Dysprosody affects rhythm and intonation in speech, resulting in the impairment of emotional or attitude expression, and usually presents as a negative symptom resulting in a monotonous tone. We herein report a rare case of recurrent glioblastoma (GBM) with dysprosody featuring sing-song speech. A 68-year-old man, formerly left-handed, with right temporal GBM underwent gross total resection.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!