Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values.

ACS Appl Mater Interfaces

Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.

Published: May 2021

Hydrogen is a fuel with a potentially zero-carbon footprint viewed as a viable alternative to fossil fuels. It can be produced in a large scale via electrochemical water splitting using electricity derived from renewable sources, but this would require highly active, inexpensive, and stable hydrogen evolution reaction (HER) catalysts to replace the Pt benchmark. Transition-metal phosphides (TMPs) are potential Pt replacements owing to their generally high activity as well as versatility as HER catalysts for different pH media. This review summarizes the recent progress in the development of TMP HER electrocatalysts, focusing on the strategies that have been recently explored to tune the activity in acidic, neutral, and basic media. These strategies are the doping of TMPs with metal and nonmetal elements, fabrication of multimetallic phosphide phases, and construction of multicomponent heterostructures comprising TMPs and another component such as a different TMP or a metal oxide/hydroxide. The synthetic methods utilized to design the catalysts are also presented. Finally, the challenges still remaining and future research directions are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c02129DOI Listing

Publication Analysis

Top Keywords

transition-metal phosphides
8
hydrogen evolution
8
evolution reaction
8
advances multimetal
4
multimetal doped
4
doped transition-metal
4
phosphides hydrogen
4
reaction values
4
values hydrogen
4
hydrogen fuel
4

Similar Publications

Transition metal phosphide-based oxygen electrocatalysts for aqueous zinc-air batteries.

Chem Commun (Camb)

January 2025

Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.

Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO/IrO-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Article Synopsis
  • Efficient bifunctional transition metal phosphide catalysts, specifically RuCo co-doped NiP (RuCoNiP), were designed to improve hydrogen production technologies through one-step electrodeposition.
  • The resulting structures, RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH), exhibited enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities and stabilities due to optimized adsorption properties and reduced energy barriers.
  • A dual-electrode system utilizing RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) achieved ultra-low battery voltage and impressive stability, highlighting the potential of this synthetic approach for efficient water-s
View Article and Find Full Text PDF

Transition metal phosphide (TMP) nanoparticles (NPs) are versatile materials for energy conversion/storage applications due to their robustness and many possibilities to tailor NPs' electronic, physical, and chemical properties. One of the hurdles toward their broader implementation is their challenging synthesis exacerbated by the limited choice of phosphorus precursors. On the one hand, the synthesis of TMP NPs can employ various alkyl- or arylphosphines requiring prolonged heating at high temperatures, while on the other hand, highly reactive P(SiMe), white phosphorus, or PH pose additional obstacles associated with their hazardous nature, high cost, and limited availability.

View Article and Find Full Text PDF

The bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) are crucial pivot in water electrolysis territory. In this study, vertically Fe incorporated CoMoP (Fe-CoMoP) nanosheet honeycomb product with super-hydrophilic and aerophobic features was projected and generated through the straightforward hydrothermal technique and phosphatized process. The Fe-CoMoP catalyst exhibits more distinguished intrinsic activity, accessible active sites, effective charge transfer and weak adhesion of gas bubbles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!