Tetrabromobisphenol A (TBBPA) is one of the most widely applied brominated flame retardants and has been widely detected in water environment, which might pose risks of brominated disinfection by-products formation in water treatment system. Ferrate(VI)-CaSO (Fe(VI)-CaSO) system could effectively degrade TBBPA at pH 7.0-9.0 but the decomposition rate of TBBPA dropped with increasing pH. The presence of 0.5 mg C/L humic acid (HA) had negligible impact on TBBPA removal, but the removal of TBBPA decreased to ~87% and 80% at pH 7.0 and 8.0, respectively, in the presence of 5.0 mg C/L HA. The transformation products of TBBPA detected in Fe(VI)-CaSO process revealed that TBBPA degradation mainly proceeded via electron abstraction, debromination, and ring-opening pathways and Br was released. In the presence of TBBPA, Fe(VI)-CaSO pre-oxidation decreased the generation of all determined DBPs during chlorination at pH 8.0 but it lessened the generation of some DBPs and slightly increased the formation of the other DBPs at pH 7.0. The toxic risk analysis showed that Fe(VI)-CaSO pre-oxidation of TBBPA could reduce the toxic risk of DBPs in both synthetic water and natural water at pH 8.0, indicating that Fe(VI)-CaSO process has the potential to be applied in practical water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125297 | DOI Listing |
Adv Mater
January 2025
College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
Combining piezocatalysts with mechanical ball milling for dissociating water to generate hydroxyl radicals (·OH) offers unprecedented opportunities for energy conversion and environmental remediation. However, the in-depth insights into the relationship between water and local polarization piezoelectric electric field (LPPEF) are currently lacking, in particularly, the ·OH formation mechanism in ball milling driven piezocatalyst system is not systematically elucidated. To this end, the present work constructs a ball milling driven piezoelectric solid/liquid interface between piezoelectric PbBOCl (PBOC) and different contents of water to investigate LPPEF initiated catalytic reaction.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Public Health, Capital Medical University, Beijing 100069, China. Electronic address:
Based on the third Chinese National Human Milk Survey (NHMS) conducted in 2016-2019, three typical legacy brominated flame retardants (BFRs), namely decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecanes (HBCDDs, sum of three isomers), were measured in 100 pooled human milk samples collected from 24 provinces across China. The median concentrations of BDE-209, TBBPA and HBCDDs were 0.27, 0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.
View Article and Find Full Text PDFSci Total Environ
February 2025
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!