A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of the microscopic mechanism of lauryl glucoside wetting coal dust: Environmental pollution prevention and control. | LitMetric

Study of the microscopic mechanism of lauryl glucoside wetting coal dust: Environmental pollution prevention and control.

J Hazard Mater

State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China.

Published: June 2021

Molecular dynamics simulation combined with experimental methods were used to investigate the adsorption and wetting process of 25 lauryl glucoside (APG-12) molecules on coal molecules and in turn study the dust suppression mechanism by APG-12 at the molecular level. Through wetting experiments, our preliminary findings showed that APG-12 does have a certain wetting effect on coal dust. According to density functional theory in molecular dynamics simulations, the electrostatic potential and surface charge of the APG-12 and coal molecular models were analyzed to identify their nucleophilic and electrophilic regions, and illustrate the hydrogen bond adsorption mechanism. The dynamics simulation results showed that APG-12 molecules can be easily adsorbed on the surface of coal molecules and then adsorb water molecules around them under the action of hydrogen bonds. This was consistent with the results of an analysis of the system's radial distribution function and the relative concentration distribution of each component in the Z-axis direction. The results are in good agreement with the experimental results from scanning electron microscopy and energy dispersive spectrometer analysis. These data provide further evidence that APG-12 can clearly improve the wettability and suppression of coal dust, which is of great importance for controlling coal dust pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125223DOI Listing

Publication Analysis

Top Keywords

coal dust
16
lauryl glucoside
8
wetting coal
8
molecular dynamics
8
dynamics simulation
8
apg-12 molecules
8
coal molecules
8
coal
7
apg-12
6
dust
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!