BOLD fMRI is increasingly used mostly in an observational way to probe the effect of genotypes or therapeutic intervention in normal and diseased subjects. We use a mechanism-based quantitative systems pharmacology computer model of a human cortical microcircuit, previously calibrated for the 2-back working memory paradigm, adding established biophysical principles, of glucose metabolism, oxygen consumption, neurovascular effects and the paramagnetic impact on blood oxygen levels to calculate a readout for the voxel-based BOLD fMRI signal. The objective was to study the effect of the Catechol-O-methyl Transferase Val158Met (COMT) genotype on performance and BOLD fMRI. While the simulation suggests that on average virtual COMTVV genotype subjects perform worse, subjects with lower GABA, lower 5-HT and higher 5-HT activation can improve cognitive performance to the level of COMTMM subjects but at the expense of higher BOLD fMRI signal. In a schizophrenia condition, increased NMDA, GABA tone and noise levels, and lower DR activity can improve cognitive outcome with greater BOLD fMRI signal in COMT Val-carriers. We further generate hypotheses about why ketamine in healthy controls increases the BOLD fMRI signal but reduces cognitive performance. These simulations suggest a strong non-linear relationship between BOLD fMRI signal and cognitive performance. When validated, this mechanistic approach can be useful for moving beyond the descriptive nature of BOLD fMRI imaging and supporting the proper interpretation of imaging biomarkers in CNS disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2021.04.001DOI Listing

Publication Analysis

Top Keywords

bold fmri
36
fmri signal
20
cognitive performance
16
bold
9
fmri
9
quantitative systems
8
systems pharmacology
8
improve cognitive
8
cognitive
5
performance
5

Similar Publications

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.

View Article and Find Full Text PDF

This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites.

View Article and Find Full Text PDF

Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

NORDIC denoising on VASO data.

Front Neurosci

January 2025

Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States.

The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!