After spinal cord injury (SCI) respiratory complications are a leading cause of morbidity and mortality. Acute intermittent hypoxia (AIH) triggers spinal respiratory motor plasticity in rodent models, and repetitive AIH may have the potential to restore breathing capacity in those with SCI. As an initial approach to provide proof of principle for such effects, we tested single-session AIH effects on breathing function in adults with chronic SCI. 17 adults (13 males; 34.1 ± 14.5 years old; 13 motor complete SCI; >6 months post injury) completed two randomly ordered sessions, AIH versus sham. AIH consisted of 15, 1-min episodes (hypoxia: 10.3% O2; sham: 21% O2) interspersed with room air breathing (1.5 min, 21% oxygen); no attempt was made to regulate arterial CO2 levels. Blood oxygen saturation (SpO2), maximal inspiratory and expiratory pressures (MIP; MEP), forced vital capacity (FVC), and mouth occlusion pressure within 0.1 s (P0.1) were assessed. Outcomes were compared using nonparametric Wilcoxon's tests, or a 2 × 2 ANOVA. Baseline SpO2 was 97.2 ± 1.3% and was unchanged during sham experiments. During hypoxic episodes, SpO2 decreased to 84.7 ± 0.9%, and returned to baseline levels during normoxic intervals. Outcomes were unchanged from baseline post-sham. Greater increases in MIP were evident post AIH vs. sham (median values; +10.8 cmHO vs. -2.6 cmHO respectively, 95% confidence interval (-18.7) - (-4.3), p = .006) with a moderate Cohen's effect size (0.68). P, MEP and FVC did not change post-AIH. A single AIH session increased maximal inspiratory pressure generation, but not other breathing functions in adults with SCI. Reasons may include greater spared innervation to inspiratory versus expiratory muscles or differences in the capacity for AIH-induced plasticity in inspiratory motor neuron pools. Based on our findings, the therapeutic potential of AIH on breathing capacity in people with SCI warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616729 | PMC |
http://dx.doi.org/10.1016/j.expneurol.2021.113735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!