Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria.

Annu Rev Phytopathol

Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809; email:

Published: August 2021

AI Article Synopsis

  • Bacteria use quorum sensing (QS) to control their virulence based on population density, while plants counteract this with defense mechanisms, including compounds that disrupt QS.
  • Plant-derived compounds specifically inhibit key components of the QS system, mainly targeting the autoinducer AHL and its synthases (LuxI) or response regulators (LuxR).
  • By integrating experimental methods with molecular modeling, researchers can uncover how these plant compounds interfere with bacterial communication, potentially leading to the development of new QS inhibitors.

Article Abstract

In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer -acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-phyto-020620-095740DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
interkingdom signaling
4
signaling interference
4
interference plant-derived
4
plant-derived small
4
small molecules
4
molecules quorum
4
sensing plant-pathogenic
4
plant-pathogenic bacteria
4
bacteria battle
4

Similar Publications

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

Gut bacteria from the Enterobacteriaceae family are a major cause of opportunistic infections worldwide. Given their prevalence among healthy human gut microbiomes, interspecies interactions may play a role in modulating infection resistance. Here we uncover global ecological patterns linked to Enterobacteriaceae colonization and abundance by leveraging a large-scale dataset of 12,238 public human gut metagenomes spanning 45 countries.

View Article and Find Full Text PDF

Expansion of the microbial drug discovery pipeline has been impeded by a limited and skewed appreciation of the microbial world and its full chemical capabilities and by an inability to induce silent biosynthetic gene clusters (BGCs). Typically, these silent genes are not expressed under standard laboratory conditions, instead requiring particular interventions to activate them. Genetic, physical, and chemical strategies have been employed to trigger these BGCs, and some have resulted in the induction of novel secondary metabolites.

View Article and Find Full Text PDF

Aeration is a common pretreatment method to enhance biogas production via anaerobic digestion of waste organic feedstocks such as unused food. While impacts on downstream anaerobic digestion have been intensively investigated, the consequence of aeration on the microbial community in food waste has not been characterised. Food waste has a low pH resulting from the dominance of lactic acid bacteria within the Firmicutes phylum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!