Objectives: Cardiopulmonary bypass surgery is complicated by metabolic acidosis, microvascular dysfunction, and capillary leak. The glycocalyx-a layer of proteins and sugars lining the vascular endothelium-is degraded during cardiopulmonary bypass. We aimed to describe the kinetics of glycocalyx degradation during and following cardiopulmonary bypass. We hypothesized that cleavage of negatively charged fragments of the glycocalyx would directly induce metabolic acidosis through changes in the strong ion gap (defined using Stewart's physicochemical approach to acid-base chemistry). We also investigated whether glycocalyx degradation was associated with failure of endothelial function and cardiovascular dysfunction.
Design: Single-center prospective cohort study.
Setting: Twenty-two bed surgical/medical PICU.
Patients: Twenty-seven term infants and children requiring cardiopulmonary bypass surgery for the correction/palliation of congenital heart disease.
Interventions: None.
Measurements And Main Results: We recruited 27 patients, 5 days to 57 months old. We prospectively sampled plasma prior to, during, and following cardiopulmonary bypass at predefined time points. We measured plasma concentrations of interleukin-6 (inflammatory marker), heparan sulfate (negatively charged glycocalyx glycosaminoglycan), and syndecan-1 (neutrally charged glycocalyx protein). We defined the following outcome measures: metabolic acidosis (strong ion gap), renal dysfunction (fold change in creatinine), capillary leak (fluid bolus volume), cardiovascular dysfunction (Vasoactive Inotropic Score), and length of ventilation. In linear regression models, maximum measured heparan sulfate concentration (negatively charged) was associated with metabolic acidosis (p = 0.016), renal dysfunction (p = 0.009), and length of ventilation (p = 0.047). In contrast, maximum measured syndecan-1 concentration (neutrally charged) was not associated with these clinical endpoints (p > 0.30 for all).
Conclusions: Our data show that metabolic acidosis (increased strong ion gap) is associated with plasma concentration of heparan sulfate, a negatively charged glycosaminoglycan cleaved from the endothelial glycocalyx during cardiopulmonary bypass. In addition, cleavage of heparan sulfate was associated with renal dysfunction, capillary leak, and global markers of cardiovascular dysfunction. These data highlight the importance of designing translational therapies to protect the glycocalyx in cardiopulmonary bypass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PCC.0000000000002746 | DOI Listing |
Front Cell Neurosci
December 2024
Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China.
Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are indispensable core techniques in cardiac surgery. Numerous studies have shown that cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with the occurrence of neuroinflammation, accompanied by the activation of microglia. Microglia, as macrophages in the central nervous system, play an irreplaceable role in neuroinflammation.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.
View Article and Find Full Text PDFMagn Reson Med
December 2024
Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.
Purpose: To measure and validate elevated succinate in brain during circulatory arrest in a piglet model of cardiopulmonary bypass.
Methods: Using data from an archive of 3T H MR spectra acquired in previous in-magnet studies, dynamic plots of succinate, spectral simulations and difference spectra were generated for analysis and validation.
Results: Elevation of succinate during circulatory arrest was observed and validated.
Cureus
November 2024
Cardiovascular Surgery, Sapporo Medical University, Sapporo, JPN.
We report a 75-year-old female with a history of two heart operations: aortic valve replacement (St. Jude Medical 21 mm) at the age of 44 years for severe rheumatic aortic stenosis and mitral valve replacement (Carbomedics 29 mm) at the age of 51 years for rheumatic mitral regurgitation. Decades later, she presented with exertional dyspnea.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, IND.
Introduction The study aimed to retrospectively evaluate the early patient outcome and left ventricular function after mitral valve replacement with a tilting disc valve and total preservation. Patients and methods This retrospective observational study includes patients who underwent mitral valve replacement using a tilting disc valve with total preservation of mitral valvular and subvalvular apparatus from July 2021 to August 2022 at a single center. Results The data were reviewed retrospectively for age, sex, comorbidities, operating time, aortic cross-clamp time, cardiopulmonary bypass time, preoperative and postoperative left ventricular ejection fraction, mean gradient across the mitral valve, left ventricular diameter, left atrial size, atrial fibrillation, complications, mortality, and early patient outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!