Exploiting cooperative effects between Na and Fe centres present in tris(amide) ferrate complexes has led to the chemoselective ferration of pentafluorobenzene, benzene, toluene, anisole, and pyridine being realised at room temperature. The importance of this bimetallic partnership is demonstrated by neither the relevant sodium amide (NaHMDS or NaTMP) nor the Fe amide Fe(HMDS) efficiently metallating these substrates under the conditions of this study. By combining NMR studies with the isolation of key intermediates and DFT calculations, we offer a possible mechanism for how these reactions take place, uncovering a surprising reaction pathway in which the metals cooperate in a synchronised manner. Although the isolated products are formally the result of Fe-H exchange, theoretical calculations indicate that the aromatic substrates undergo Na-H exchange followed by fast intramolecular transmetallation to Fe, thus stabilizing the newly generated aryl fragment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362017 | PMC |
http://dx.doi.org/10.1002/anie.202104275 | DOI Listing |
Adv Biotechnol (Singap)
January 2025
Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively.
View Article and Find Full Text PDFJ Org Chem
January 2025
CatOM Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
Tris(pentafluorophenyl)borane B(CF)·HO is reported as a catalyst for dehydrative amidation of carboxylic acids and amines. This protocol is applicable across a wide range of >35 substrates, including aromatic and aliphatic amines and acids, resulting in amides in ≤92% yields. The scalability of the reaction up to 10 mmol, along with the synthesis of drugs such as ibuprofen amide, moclobemide, and phenacetin, demonstrates the industrial potential of our protocol.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry, The University of Texas at San Antonio, Texas 78249, United States. Electronic address:
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
January 2025
Department of Chemistry, Emory University, Atlanta, GA, USA.
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.
View Article and Find Full Text PDFHerein, a novel magnetic resorcinol-formaldehyde-supported isatin-Schiff-base/Fe complex (FeO@RF-ISB/Fe) is prepared and characterized and its catalytic performance is investigated in the synthesis of pyrano[2,3-]pyrimidines. The FeO@RF-ISB nanomaterial was prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over the FeO@RF composite, followed by treatment with isatin. The FeO@RF-ISB was then reacted with FeCl·6HO to afford the FeO@RF-ISB/Fe nanocatalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!