A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation of trapezoidal-shaped overlapping nuclear pulse parameters based on a deep learning CNN-LSTM model. | LitMetric

Estimation of trapezoidal-shaped overlapping nuclear pulse parameters based on a deep learning CNN-LSTM model.

J Synchrotron Radiat

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Dongsanlu, Erxianqiao, Chengdu 610059, People's Republic of China.

Published: May 2021

The Long Short-Term Memory neural network (LSTM) has excellent learning ability for the time series of the nuclear pulse signal. It can accurately estimate the parameters (such as amplitude, time constant, etc.) of the digitally shaped nuclear pulse signal (especially the overlapping pulse signal). However, due to the large number of pulse sequences, the direct use of these sequences as samples to train the LSTM increases the complexity of the network, resulting in a lower training efficiency of the model. The convolution neural network (CNN) can effectively extract the sequence samples by using its unique convolution kernel structure, thus greatly reducing the number of sequence samples. Therefore, the CNN-LSTM deep neural network is used to estimate the parameters of overlapping pulse signals after digital trapezoidal shaping of exponential signals. Firstly, the estimation of the trapezoidal overlapping nuclear pulse is considered to be obtained after the superposition of multiple exponential nuclear pulses followed by trapezoidal shaping. Then, a data set containing multiple samples is set up; each sample is composed of the sequence of sampling values of the trapezoidal overlapping nuclear pulse and the set of shaping parameters of the exponential pulse before digital shaping. Secondly, the CNN is used to extract the abstract features of the training set in these samples, and then these abstract features are applied to the training of the LSTM model. In the training process, the pulse parameter set estimated by the present neural network is calculated by forward propagation. Thirdly, the loss function is used to calculate the loss value between the estimated pulse parameter set and the actual pulse parameter set. Finally, a gradient-based optimization algorithm is applied to update the weight by getting back the loss value together with the gradient of the loss function to the network, so as to realize the purpose of training the network. After model training was completed, the sampled values of the trapezoidal overlapping nuclear pulse were used as input to the CNN-LSTM model to obtain the required parameter set from the output of the CNN-LSTM model. The experimental results show that this method can effectively overcome the shortcomings of local convergence of traditional methods and greatly save the time of model training. At the same time, it can accurately estimate multiple trapezoidal overlapping pulses due to the wide width of the flat top, thus realizing the optimal estimation of nuclear pulse parameters in a global sense, which is a good pulse parameter estimation method.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S1600577521003441DOI Listing

Publication Analysis

Top Keywords

nuclear pulse
28
overlapping nuclear
16
neural network
16
trapezoidal overlapping
16
pulse parameter
16
parameter set
16
pulse
15
cnn-lstm model
12
pulse signal
12
model training
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!