AI Article Synopsis

  • Tumor-associated macrophages (TAMs) are important in prostate cancer and common orthotopic models do not accurately represent the tumor microenvironment.
  • Genetically engineered mouse models, specifically Hi-Myc and TRAMP, have been studied to understand TAM characteristics and their role in tumor progression.
  • The Hi-Myc model shows a higher density of TAMs and is suggested to better reflect human prostate cancer, making it a more suitable option for developing novel therapies targeting the TME.

Article Abstract

Background: Tumor-associated macrophages (TAMs) are critical components of the tumor microenvironment (TME) in prostate cancer. Commonly used orthotopic models do not accurately reflect the complete TME of a human patient or the natural initiation and progression of a tumor. Therefore, genetically engineered mouse models are essential for studying the TME as well as advancing TAM-targeted therapies. Two common transgenic (TG) models of prostate cancer are Hi-Myc and transgenic adenocarcinoma of the mouse prostate (TRAMP), but the TME and TAM characteristics of these models have not been well characterized.

Methods: To advance the Hi-Myc and TRAMP models as tools for TAM studies, macrophage infiltration and characteristics were assessed using histopathologic, flow cytometric, and expression analyses in these models at various timepoints during tumor development and progression.

Results: In both Hi-Myc and TRAMP models, macrophages adopt a more pro-tumor phenotype in higher histological grade tumors and in older prostate tissue. However, the Hi-Myc and TRAMP prostates differ in their macrophage density, with Hi-Myc tumors exhibiting increased macrophage density and TRAMP tumors exhibiting decreased macrophage density compared to age-matched wild type mice.

Conclusions: The macrophage density and the adenocarcinoma cancer subtype of Hi-Myc appear to better mirror patient tumors, suggesting that the Hi-Myc model is the more appropriate in vivo TG model for studying TAMs and TME-targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720375PMC
http://dx.doi.org/10.1002/pros.24139DOI Listing

Publication Analysis

Top Keywords

macrophage density
16
prostate cancer
12
hi-myc tramp
12
tumor-associated macrophages
8
models
8
mouse models
8
tramp models
8
tumors exhibiting
8
hi-myc
7
prostate
5

Similar Publications

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.

View Article and Find Full Text PDF

Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!