Objective: We conducted a systematic review/meta-analysis to evaluate noninvasive brain stimulation (NIBS) efficacy to alleviate pain and improve disability in low back pain (LBP).
Materials And Methods: A systematic literature search was performed by a librarian in MEDLINE, Embase, EBM Reviews, CINAHL, and Web of Science databases (last search: January 14, 2021). Data were pooled by the number of sessions and follow-up periods. Independent reviewers performed screening, data extraction, and risk of bias. Pain reduction and disability were used as outcomes.
Results: Twelve articles were included in the qualitative synthesis and 8 in the meta-analysis. A single session of NIBS reduced pain compared with sham (standardized mean difference: -0.47; P<0.001; very low-quality evidence). Repeated sessions of NIBS did not impact pain at short-term (mean difference [MD]: -0.31; P=0.23) or midterm (MD: -0.56; P=0.33; moderate quality evidence). Combining NIBS with cointerventions did not influence pain (MD: -0.31; P=0.30; moderate quality evidence). NIBS did not have a statistically significant impact on disability.
Discussion: There is very low-quality evidence suggesting that a single NIBS session reduces LBP intensity. In contrast, there is moderate quality evidence that repeated NIBS sessions or combination with cointervention did not improve pain or disability. Thus, current results do not support NIBS use to treat chronic LBP. Considering that tDCS was tested in 8 of 12 studies with little success, studies focusing on different NIBS techniques or innovative parameters are required to determine their potential to improve pain and disability in chronic LBP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/AJP.0000000000000934 | DOI Listing |
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:
Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.
Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).
Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!