Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic obstructive pulmonary disease (COPD) is composed of chronic airway inflammation and emphysema. Recent studies show that Class IA phosphatidylinositol 3-kinases (PI3Ks) play an important role in the regulation of inflammation and emphysema. However, there are few studies on their regulatory subunits. p55PIK is a regulatory subunit of Class IA PI3Ks, and its unique NH-terminal gives it special functions. p55PIK expression in the lungs of nonsmokers, smokers, and patients with COPD was examined. We established a fusion protein TAT-N15 from the NH-terminal effector sequence of p55PIK and TAT (the transduction domain of HIV transactivator protein) and investigated the effects of silencing p55PIK or adding TAT-N15 on cigarette smoke exposure at the cellular and animal level. p55PIK expression was increased in patients with COPD. p55PIK deficiency and TAT-N15 significantly inhibited the cigarette smoke extract-induced IL-6, IL-8, and activation of the Akt and the NF-κB pathway in BEAS-2B. p55PIK deficiency and TAT-N15 intranasal administration prevented emphysema and the lung function decline in mice exposed to smoke for 6 mo. p55PIK deficiency and TAT-N15 significantly inhibited lung inflammatory infiltration, reduced levels of IL-6 and KC in mice lung homogenate, and inhibited activation of the Akt and the NF-κB signaling in COPD mice lungs. Our studies indicate that p55PIK is involved in the pathogenesis of COPD, and its NH-terminal derivative TAT-N15 could be an effective drug in the treatment of COPD by inhibiting the activation of the Akt and the NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00560.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!