It is commonly thought that in the early development of life on this planet RNA would have acted both as a store of genetic information and as a catalyst. While a number of RNA enzymes are known in contemporary cells, they are largely confined to phosphoryl transfer reactions, whereas an RNA based metabolism would have required a much greater chemical diversity of catalysis. Here we discuss how RNA might catalyze a wider variety of chemistries, and particularly how information gleaned from riboswitches could suggest how ribozymes might recruit coenzymes to expand their chemical range. We ask how we might seek such activities in modern biology. This article is categorized under: RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wrna.1651 | DOI Listing |
Mikrochim Acta
January 2025
USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Ternary heterojunction BiS/MoS/BiMoO was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the BiS/MoS/BiMoO heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville-CSIC, Avda. Americo Vespucio 49, Seville, 41092, Spain.
Gene duplication has allowed protein evolution toward novel functions and mechanisms. The differences between paralogous genes frequently rely on the sequence of disordered regions. For instance, in mammals, the chaperones ANP32A and ANP32B share a common evolutionary line and have some exchangeable functions based on their similar N-terminal domains.
View Article and Find Full Text PDFEnviron Microbiol
February 2025
Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
Corals associate with a diverse community of prokaryotic symbionts that provide nutrition, antioxidants and other protective compounds to their host. However, the influence of microbes on coral thermotolerance remains understudied. Here, we examined the prokaryotic microbial communities associated with colonies of Acropora cf.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry, Pharmacy, GERMANY.
Targeting the RNA genome of SARS-CoV-2 is a viable option for antiviral drug development. We explored three ligand binding sites of the core pseudoknot RNA of the SARS-CoV-2 frameshift element. We iteratively optimized ligands, based on improved affinities, targeting these binding sites and report on structural and dynamic properties of the three identified binding sites.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA.
Self-assembly plays a critical role in nanoparticle-based applications. However, it remains challenging to monitor the self-assembly of multi-component nanomaterials at a single-particle level, in real-time, with high throughput, and in a model-independent manner. Here, multi-color fluorescence microscopy is applied to track the assembly of both liposomes and mRNA simultaneously in clinical mRNA-based cancer immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!