The fine structure of sleep electrocortical activity reflects health and disease. The current study provides normative data for sleep structure and electroencephalography (EEG) spectral power measures derived from overnight polysomnography (PSG) and examines the effect of age and sex among Korean middle-aged and older adults with or without obstructive sleep apnea (OSA). We analysed home PSG data from 1,153 adult participants of an ongoing population-based cohort study, the Korean Genome and Epidemiology Study. Sleep stages were visually scored and spectral power was measured on a single-channel EEG (C4-A1). We computed spectral power for five frequency ranges. The EEG power was reported in relative (%) and log-transformed absolute values (µV ). With ageing, the proportion of N1 sleep increased, whereas N3 decreased, which is more noticeable in men than in women. The amount of N3 was relatively low in this cohort. With ageing, relative delta power decreased and alpha and sigma power increased for the whole sleep period, which was more pronounced during REM sleep in non-OSA. For men compared with women, relative theta power was lower during REM and sigma and beta were higher during N1 sleep. The differences of relative powers by age and sex in OSA were comparable to those in non-OSA. In a community-based Korean population, we present normative data of sleep structure and spectral power for middle-aged or older adults of a non-Caucasian ethnicity. The values varied with age and sex and were not influenced by sleep apnea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jsr.13358 | DOI Listing |
Commun Eng
January 2025
THz-Photonics Group, Technische Universität Braunschweig, Braunschweig, Germany.
New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.
View Article and Find Full Text PDFDev Psychobiol
January 2025
Department of Psychology, University of Texas at Dallas, Richardson, Texas, USA.
Aggression is commonly associated with increased experiences of peer rejection and maladaptive social information processing biases throughout development. Little is known about the neural correlates of peer rejection that might underlie social information processing biases, and whether these neural correlates are common or different across early- and mid-adolescents on a continuum of aggression. Using the Cyberball task, we examined mediofrontal theta (4-7 Hz) event-related EEG spectral power during conditions of explicit and ambiguous social exclusion in 117 participants (57 early adolescents, ages 10-12 years, and 60 mid-adolescents, ages 14-16 years).
View Article and Find Full Text PDFAs a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.
View Article and Find Full Text PDFCoherent heterodyne lidars are typically used for windspeed and attenuated backscattering measurements. The lack of molecular backscattering detection capability has limited the calibrated backscattering measurements until recent advances in coherent lidar technology. In this work, the simultaneous detection of aerosol and molecular backscattering is demonstrated with coherent heterodyne lidar, and the results are compared with a state-of-the-art Raman lidar PollyXT as a reference in a long-range for the first time.
View Article and Find Full Text PDFWave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!